Thermal Food Engineering Operations. NITIN KUMAR
Чтение книги онлайн.

Читать онлайн книгу Thermal Food Engineering Operations - NITIN KUMAR страница 23

Название: Thermal Food Engineering Operations

Автор: NITIN KUMAR

Издательство: John Wiley & Sons Limited

Жанр: Техническая литература

Серия:

isbn: 9781119776413

isbn:

СКАЧАТЬ in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology, 53(3), 1567-1575.

      56. Ozkoc, S. O., & Seyhun, N. (2015). Effect of gum type and flaxseed concentration on quality of gluten-free breads made from frozen dough baked in infrared-microwave combination oven. Food and Bioprocess Technology, 8(12), 2500-2506.

      58. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non- thermal technologies in food processing. Food Research International, 43(7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013

      59. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition, 43(6), 587-606.

      60. Pradeep, P., Abdullah, S. A., Choi, W., Jun, S., Oh, S., & Ko, S. (2013). Potentials of microwave heating technology for select food processing applications-a brief overview and update. Journal of Food Processing and Technology, 4(11).

      61. Priyadarshini, A., Rayaguru, K., & Nayak, P. K. (2020). Influence of Ohmic Heating on Fruits and Vegetables: A Review. Journal of Critical Reviews, 7(19), 1952-1959.

      62. Rahman, M. S. (2007). Handbook of Food Preservation. In Food Science and Technology. https://doi.org/10.1017/CBO9781107415324.004

      63. Richardson, P. (2001). Thermal technologies in food processing. In Food Science and Technology. https://doi.org/10.1017/CBO9781107415324.004.

      64. S.-S. Kim, D.-H. K. (2017). Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157_H7, S. Typhimurium, L. monocytogenes, and MS-2 bacteriophage in salsa _ Elsevier Enhanced Reader.pdf. Food Control, 300–305.

      65. Sensoy, I., & Sastry, S. K. (2007). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15. https://doi.org/10.1111/j.1745-4530.2004.tb00619.x.

      66. Si, X., Chen, Q., Bi, J., Yi, J., Zhou, L., & Wu, X. (2016). Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry. Journal of Food Process Engineering, 39(4), 377-390.

      67. Song, Y., Wu, L., Li, N., Hu, M., & Wang, Z. (2015). Utilization of a novel microwave-assisted homogeneous ionic liquid microextraction method for the determination of Sudan dyes in red wines. Talanta, 135, 163-169.

      68. Soysal, Y., Arslan, M., & Keskin, M. (2009). Intermittent microwave-convective air drying of oregano. Food Science and Technology International, 15(4), 397-406.

      69. Ştefănoiu, G. A., Tănase, E. E., Miteluţ, A. C., & Popa, M. E. (2016). Unconventional treatments of food: Microwave vs. Radiofrequency. Agriculture and Agricultural Science Procedia, 10, 503-510.

      70. Stephen, N. M., Shakila, R. J., Jeyasekaran, G., & Sukumar, D. (2010). Effect of different types of heat processing on chemical changes in tuna. Journal of Food Science and Technology, 47(2), 174-181.

      71. Sun, D. W. (2005). Emerging technologies for food processing. Elsevier.

      73. Tao, Y., & Sun, D. W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition, 55(4), 570-594.

      74. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10(1), 1-11.

      75. Thomas Ohlsson and Nils Bengtsson. (2002). Minimal Processing Technologies in the Food Industry. In Minimal Processing Technologies in the Food Industry. https://doi.org/10.1201/9781439823132

      76. Uysal, N., Sumnu, G., & Sahin, S. (2009). Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering, 90(2), 255-261.

      77. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials-A review. Food and Bioprocess Technology, 3(2), 161–171. https://doi.org/10.1007/s11947-008-0136-0

      78. Valero, A., Cejudo, M., & García-Gimeno, R. M. (2014). Inactivation kinetics for Salmonella Enteritidis in potato omelet using microwave heating treatments. Food Control, 43, 175-182.

      79. Valerie Orsat & Vijaya G.S. Raghavan. (2005). Radio frequency processing. Emerging Technologies for Food Processing, 445-468. https://doi.org/10.1016/B978-012676757-5/50019-0

      80. Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178.

      81. Wang, S., Luechapattanaporn, K., & Tang, J. (2008). Experimental methods for evaluating heating uniformity in radio frequency systems. Biosystems Engineering, 100(1), 58–65. https://doi.org/10.1016/j.biosystemseng.2008.01.011

      82. Wongsa-Ngasri, P. (2004). Ohmic heating of biomaterials: Peeling and effects of rotating electric field. In ProQuest Dissertations and Theses. https://search.proquest.com/docview/305140014?accountid=27575

      83. Won, M. Y., Lee, S. J., & Min, S. C. (2017). Mandarin preservation by microwave- powered cold plasma treatment. Innovative Food Science & Emerging Technologies, 39, 25-32.

      84. Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680.

      *Corresponding author: [email protected]

      2

      Microbial Inactivation with Heat Treatments

       Sushree Titikshya*, Monalisa Sahoo, Vivek СКАЧАТЬ