Fundamentals of Financial Instruments. Sunil K. Parameswaran
Чтение книги онлайн.

Читать онлайн книгу Fundamentals of Financial Instruments - Sunil K. Parameswaran страница 42

СКАЧАТЬ 1 minus StartFraction 1 Over left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline EndFraction right-bracket EndLayout"/>

      EXAMPLE 2.16

      Alpha Technologies is offering a financial instrument to Alfred that promises to pay $2,500 per year for 25 years, beginning one year from now. Alfred requires an annual rate of return of 8%. The question is, what is the maximum price that he will be prepared to pay?

      PVIFA left-parenthesis 8 comma 25 right-parenthesis equals 10.6748. Thus the value of the payments is:

2 comma 500 times PVIFA left-parenthesis 8 comma 25 right-parenthesis equals 2 comma 500 times 10.6748 equals dollar-sign 26 comma 687

      Future Value

      Similarly, we can compute the future value of a level annuity that makes N payments, by compounding each cash flow until the end of the last payment period.

StartLayout 1st Row normal upper F period normal upper V equals upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 1 Baseline plus upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 2 Baseline plus upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 3 Baseline plus minus minus minus minus plus upper A EndLayout

      Therefore,

StartLayout 1st Row 1st Column Blank 2nd Column normal upper F period normal upper V left-parenthesis 1 plus r right-parenthesis equals upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline plus upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 1 Baseline plus upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 2 Baseline 2nd Row 1st Column Blank 2nd Column plus minus minus minus minus plus upper A left-parenthesis 1 plus r right-parenthesis right double arrow normal upper F period normal upper V left-bracket left-parenthesis 1 plus r right-parenthesis minus 1 right-bracket 3rd Row 1st Column Blank 2nd Column equals upper A left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline minus upper A right double arrow normal upper F period normal upper V equals StartFraction upper A Over r EndFraction left-bracket left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline minus 1 right-bracket EndLayout

      StartFraction 1 Over r EndFraction left-bracket left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline minus 1 right-bracket is called the Future Value Interest Factor Annuity (FVIFA). This is the future value of an annuity that pays $1 per period for N periods, where interest is compounded at the rate of r% per period. The advantage once again is that if we know the factor, we can calculate the future value of any annuity that pays $A per period.

      EXAMPLE 2.17

      Paula Baker expects to receive $2,500 per year for the next 25 years, starting one year from now. Assuming that the cash flows can be reinvested at 8% per annum, how much will she have at the point of receipt of the last cash flow?

      FVIFA left-parenthesis 8 comma 25 right-parenthesis equals 73.1059 period Thus the future value is:

normal upper F period normal upper V equals 2 comma 500 times FVIFA left-parenthesis 8 comma 25 right-parenthesis equals 2 comma 500 times 73.1059 equals dollar-sign 182 comma 764.75

An illustration of Timeline for an Annuity Due

      Present Value

StartLayout 1st Row normal upper P period normal upper V period equals upper A plus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis EndFraction plus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis squared EndFraction plus minus minus minus minus plus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 1 Baseline EndFraction EndLayout

      Therefore,

StartLayout 1st Row normal upper P period normal upper V left-parenthesis 1 plus r right-parenthesis equals upper A left-parenthesis 1 plus r right-parenthesis plus upper A plus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis EndFraction plus minus minus minus minus plus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 2 Baseline EndFraction 2nd Row right double arrow normal upper P period normal upper V left-bracket left-parenthesis 1 plus r right-parenthesis minus 1 right-bracket equals upper A left-parenthesis 1 plus r right-parenthesis minus StartFraction upper A Over left-parenthesis 1 plus r right-parenthesis Superscript upper N minus 1 Baseline EndFraction 3rd Row right double arrow normal upper P period normal upper V equals StartFraction upper A Over r EndFraction left-bracket 1 minus StartFraction 1 Over left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline EndFraction right-bracket left-parenthesis 1 plus r right-parenthesis 4th Row Hence PVIFA Subscript upper A upper D Baseline left-parenthesis r comma upper N right-parenthesis equals PVIFA left-parenthesis r comma upper N right-parenthesis times left-parenthesis 1 plus r right-parenthesis EndLayout

      The present value of an annuity due that makes N payments is obviously greater than that of a corresponding annuity that makes N payments, because in the case of the annuity due, each of the cash flows has to be discounted for one period less. Consequently, the present value factor for an N period annuity due is greater than that for an N period annuity by a factor of (1 + r).

      An obvious example of an annuity due is an insurance policy, because the first premium has to be paid as soon as the policy is purchased.

      EXAMPLE 2.18

      David Mathew has just bought an insurance policy from MetLife. The annual premium is $2,500, and he is required to make 25 payments. What is the present value of this annuity due if the discount rate is 8% per annum?

СКАЧАТЬ