Fundamentals of Financial Instruments. Sunil K. Parameswaran
Чтение книги онлайн.

Читать онлайн книгу Fundamentals of Financial Instruments - Sunil K. Parameswaran страница 39

СКАЧАТЬ periods at a periodic interest rate of r%, then the future value of the investment is given by

normal upper F period normal upper V period equals upper P left-parenthesis 1 plus r right-parenthesis Superscript upper N

      The expression (1 + r)N is the amount to which an investment of $1 will grow at the end of N periods, if it is invested at a rate r. It is called the FVIF (Future Value Interest Factor). It depends only on two variables, namely the periodic interest rate, and the number of periods. The advantage of knowing the FVIF is that we can find the future value of any principal amount, for given values of the interest rate and time period, by simply multiplying the principal by the factor. The process of finding the future value given an initial investment is called compounding.

      EXAMPLE 2.11

      Shelly Smith has deposited $25,000 for four years in an account that pays interest at the rate of 8% per annum compounded annually. What is the future value of her investment?

      The factor in this case is given by FVIF left-parenthesis 8 comma 4 right-parenthesis equals left-parenthesis 1.08 right-parenthesis Superscript 4 Baseline equals 1.3605

      Thus, the future value of the deposit is dollar-sign 25 comma 000 times 1.3605 equals dollar-sign 34 comma 012.50

      Note 3: Remember that the value of N corresponds to the total number of interest conversion periods, in case interest is being compounded more than once per measurement period. Consequently, the interest rate used should be the rate per interest conversion period. The following example will clarify this issue.

      EXAMPLE 2.12

      Simone Peters has deposited $25,000 for four years in an account that pays a nominal annual interest of 8% per annum with quarterly compounding. What is the future value of her investment?

      8% per annum for four years is equivalent to 2% per quarter for 16 quarterly periods. Thus the required factor is FVIF(2,16) and not FVIF(8,4).

FVIF left-parenthesis 2 comma 16 right-parenthesis equals left-parenthesis 1.02 right-parenthesis Superscript 16 Baseline equals 1.3728

      Thus the future value of dollar-sign 25 comma 000 is 25 comma 000 times 1.3728 equals dollar-sign 34 comma 320

      Note 4: The FVIF is given in the form of tables in most textbooks, for integer values of the interest rate and number of time periods. If, however, either the interest rate or the number of periods is not an integer, then we cannot use such tables and would have to rely on a scientific calculator or a spreadsheet.

      The Mechanics of Present Value Calculation

      Take the case of an investor who wishes to have $F after N periods. The periodic interest rate is r%, and interest is compounded once per period. Our objective is to determine the initial investment that will result in the desired terminal cash flow. Quite obviously

normal upper P period normal upper V period equals StartFraction normal upper F Over left-parenthesis 1 plus r right-parenthesis Superscript upper N Baseline EndFraction

      where P.V. is the present value of $F.

      EXAMPLE 2.13

      Patricia wants to deposit an amount of $P with her bank in order to ensure that she has $25,000 at the end of four years. If the bank pays 8% interest per annum compounded annually, how much does she have to deposit today?

upper P equals StartFraction 25 comma 000 Over left-parenthesis 1.08 right-parenthesis Superscript 4 Baseline EndFraction equals dollar-sign 18 comma 375.75

      Let us assume that we wish to compute the present value or the future value of a series of cash flows, for a given interest rate. The first cash flow will arise after one period, and the last will arise after N periods. In such a situation, we can simply find the present value of each of the component cash flows and add up the terms in order to compute the present value of the entire series. The same holds true for computing the future value of a series of cash flows. Thus present values and future values are additive in nature.

      EXAMPLE 2.14

Year Cash Flow
1 2,500
2 5,000
3 8,000
4 10,000
5 СКАЧАТЬ