Название: Modelos discretos en epidemiología
Автор: Paula Andrea González Parra
Издательство: Bookwire
Жанр: Математика
isbn: 9789586190947
isbn:
1.1.Presentación del modelo discreto SIR
En los últimos años se ha incrementado el interés en el uso de modelos discretos para estudiar la dinámica de las enfermedades transmisibles [1, 5, 6, 7, 8], sin embargo no son muchos los estudios en los que se consideran modelos discretos. Aunque matemáticamente son un poco más complejos, los resultados son más fáciles de comparar con los datos experimentales dado que los datos son obtenidos en intervalos discretos de tiempo (días, semanas, meses, entre otros).
Se presenta a continuación la versión discreta del modelo SIR. Para esto se siguen las ideas presentadas en [20, 21], de manera similar a la versión continua presentada, no se tienen en cuenta nacimientos y muertes por causas naturales, ya que se considera un único brote de la enfermedad. En el modelo, el subindice t es utilizado para denotar el número de individuos de cada clase en el tiempo t; es decir, St, It, y Rt, representan el número de susceptibles, infectados y recuperados en el tiempo t, para t en el intervalo [0, n], donde n denota el tiempo final de un brote único de la enfermedad.
La fracción de individuos susceptibles al tiempo t que permanecen susceptibles en el tiempo t + 1 está dado por la función
donde β representa la probabilidad de una nueva infección, por tanto el número de individuos susceptibles en el día t + 1 está dado por la ecuación
Así pues, 1 Gt representa la fracción de individuos que eran suscetibles y son infectados en el tiempo t + 1. No se consideraron muertes debidas a la enfermedad; se asume que la probalilidad de que un individuo se recupere de manera natural está dada por σ (por generación). Por tanto el número de individuos infectados el día t + 1 está dado por los que eran susceptibles el día t y se infectaron, más los que estaban infectados el día t y no se recuperaron, así:
Finalmente el número de individuos recuperados el día t+1 está dado por los que ya estaban recuperados el día t más los que estaban infectados y ya se recuperaron.
Teniendo en cuenta las consideraciones y definiciones dadas, el modelo está dado por el siguiente sistema de ecuaciones en diferencias:
La Figura 1.2 muestra una representación de la dinámica de la enfermedad.
Diagrama modelo discreto SIR
Figura 1.2: Diagrama de flujo compartamental para el modelo discreto SIR.
A continuación se presenta el Número Reproductivo Básico R0, el cual se define como el número de casos secundarios que un único individuo infectado puede producir en una población de individuos susceptibles.
1.2. Número Reproductivo Básico R0
Para calcular el valor del Número Reproductivo Básico R0, se tiene en cuenta la relación del tamaño final de la epidemia, dado en [1]
De la ecuación (1.2),
De donde
Calculando logaritmo natural en ambos lados de la igualdad se obtiene
De donde
Pero
De donde se obtiene que
Ahora, de la ecuación (1.3)
It+1 – (1 – σ) It = St – StGt
Pero StGt = St+1, por tanto
It+1 – (1 – σ) It = St – St+1
Sumando desde t = 0 hasta n se obtiene
De donde
Así que
Se tiene que S0 + I0 = N, además cuando t → ∞, It+1 → 0, entonces
Es decir,
De la ecuación (1.7), se tiene que
Por lo tanto
De donde se obtiene la relación del tamaño final de la epidemia dada en (1.6)
Obteniendo así el Número Reproductivo Básico R0
СКАЧАТЬ