Виртуальная конкуренция. Посулы и опасности алгоритмической экономики. Ариэль Эзрахи
Чтение книги онлайн.

Читать онлайн книгу Виртуальная конкуренция. Посулы и опасности алгоритмической экономики - Ариэль Эзрахи страница 9

СКАЧАТЬ товаров у своей двери в течение пары дней, если не в тот же день35. За дополнительную плату некоторые товары могут быть доставлены в течение часа36. Сегодня этот онлайновый поставщик может похвастать доставкой молочной, охлажденной и замороженной продукции, и удовлетворить почти все потребности человека37. Некоторые онлайн-магазины не только предлагают быструю доставку или возможность самовывоза в кратчайшие сроки, но и инвестируют в офлайновые магазины для поддержки своих интернет-продаж.

      Рост использования больших данных и аналитики больших данных

      Как показывает рассмотренный пример компании Amazon, сегодня наш мир онлайновой торговли во всевозрастающей степени зависит от больших данных и аналитики больших данных. Существуют различные определения понятия больших данных. Многие из них являются широкими и полными38. Хотя цифровые данные могут быть разными, здесь мы главным образом сосредоточиваем внимание на персональных данных, которые обычно означают «любую информацию, относящуюся к определенному или потенциально устанавливаемому лицу (субъекту данных)»39. Большие данные обычно характеризуют четырьмя свойствами: объемом цифровых данных; скоростью их сбора, использования и распространения; многообразием собранной информации; наконец, ценностью этих данных40.

      Использование больших данных и их ценность возросли с ростом использования аналитики больших данных – способности разрабатывать алгоритмы, которые могут получать доступ к огромному количеству информации и анализировать ее. Кроме того, внедрение машинного обучения дополнительно стимулировало активность в данной области.

      В недавние годы имели место прорывные исследования и грандиозный прогресс в деле разработки и развития умных самообучающихся алгоритмов, помогающих в принятии ценовых решений, планировании, торговле и логистике. Эта область привлекла значительные инвестиции в технологии глубокого обучения со стороны ведущих игроков рынка41.

      В 2011 г. созданный компанией International Business Machines (IBM) компьютер Watson, победивший в телевизионной игре Jeopardy!42, продемонстрировал возможности подхода глубокого обучения, которые позволили ему оптимизировать свою стратегию методом проб и ошибок43. С тех пор IBM осуществляла инвестиции в расширение мощности и функциональности данной технологии. Цель компании – создать «эквивалент вычислительной операционной системы для перспективного класса приложений искусственного интеллекта, работающих за счет больших данных»44.

      Недавний запуск компанией Google сети Deep Q показал достоинства усовершенствованной способности к самообучению. Компьютер настроили для прохождения старых игр компании Atari. Важно, что он не был запрограммирован, как реагировать на все возможные действия в игре. Лучше сказать, что он опирался на модели, которые позволяли ему «изучать» положения игры методом проб и ошибок, с течением времени улучшая свои результаты. Эта технология СКАЧАТЬ