Последовательность называется возрастающей (убывающей), если для любого n выполняется условие: an+1 > an (an+1 < an). Возрастающие и убывающие последовательности называются строго монотонными.
Последовательность называется невозрастающей (неубывающей), если для любого n выполняется условие: an+1 ≤ an (an+1 ≥ an).
Невозрастающие и неубывающие последовательности называются монотонными.
Последовательность {an} называется сходящейся, если существует такое число А, что для любого положительного числа ε > 0 найдется такой номер N, что при всех n > N |an – A| < ε. Если последовательность не сходится, то она называется расходящейся.
Число А называется пределом последовательности {an}, если для ε > 0 существует такое натуральное число N, что при всех n > N |an– A| < ε. Обозначение предела последовательности:
.Теорема. Всякая сходящаяся последовательность имеет только один предел.
Для подпоследовательностей справедливо:
1) если последовательность сходится к пределу А, то и ее подпоследовательность сходится к пределу А;
2) если все подпоследовательности некоторой последовательности сходятся, то все они сходятся к одному и тому же пределу и к нему же сходится исходная последовательность.
Теорема. Предел суммы (разности), произведения и частного равен сумме (разности), произведению и частному пределов, т. е., если
, то:, где с – постоянная;
10. Ограниченные и неограниченные последовательности. Бесконечно большие и бесконечно малые последовательности
Последовательность {аn} называется ограниченной сверху (снизу), если существует число М (m) такое, что для любого n an ≤ M (an ≥ m). Число М (m) называется верхней (нижней) границей последовательности {an}.
Последовательность {аn} называется ограниченной, если она ограничена и сверху, и снизу.
Теорема. Последовательность {аn} ограничена тогда и только тогда, когда существует число r > 0 такое, что |an| < r для всех n.
Теорема. Свойства ограниченности последовательности сверху, снизу и с двух сторон не нарушатся при отбрасывании (добавлении) конечного числа членов последовательности.
Теорема. Сумма двух ограниченных последовательностей есть ограниченная последовательность.
Последовательность {аn} называется бесконечно малой, если для любого положительного ε существует такой номер N, что, начиная с него, для всех членов последовательности справедливо |an| < ε.
Последовательность {аn} называется бесконечно большой, если для любого положительного Р существует такой номер N, что, начиная с него, для всех членов последовательности справедливо |an| < Р.
Предел СКАЧАТЬ