Название: Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers
Автор: Kalyan K. Sen
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119824381
isbn:
4 Chapter 4Figure 4‐1 (a) Autotransformer. (b) two‐winding transformer.Figure 4‐2 Ranges of voltage magnitudes (Vs and Vs′) at the sending an...Figure 4‐3 Ranges of voltage magnitudes (Vs and Vs′) at the sending an...Figure 4‐4 (a) Voltage‐regulating transformer (shunt‐series configuration); ...Figure 4‐5 Ranges of voltage magnitudes (Vs and Vs′) at the sending an...Figure 4‐6 (a) Voltage‐regulating transformer (two‐winding transformer); (b)...Figure 4‐7 Ranges of voltage magnitudes (Vs and Vs′) at the sending an...Figure 4‐8 Ranges of voltage magnitudes (Vs and Vs′) at the sending an...Figure 4‐9 (a) PAR (asym) configuration in a bypass‐mode of operation; (b) p...Figure 4‐10 (a) PAR (asym) configuration for decreasing power flow; (b) phas...Figure 4‐11 (a) PAR (asym) configuration for increasing power flow; (b) phas...Figure 4‐12 Ranges of voltage magnitudes (Vs and Vs′) at the sending a...Figure 4‐13 (a) PAR (sym) configuration in a bypass‐mode of operation; (b) p...Figure 4‐14 (a) PAR (sym) configuration for decreasing power flow; (b) phaso...Figure 4‐15 (a) PAR (sym) configuration for increasing power flow; (b) phaso...Figure 4‐16 Ranges of voltage magnitudes (Vs and Vs′) at the sending a...
5 Chapter 5Figure 5‐1 Shunt‐compensating, mechanically‐switched capacitor, connected to...Figure 5‐2 Exchanged reactive power (Qsh), the resulting voltages (v1A and VFigure 5‐3 Shunt‐compensating, mechanically‐switched capacitor with a series...Figure 5‐4 Exchanged reactive power (Qsh), the resulting voltages (v1A and VFigure 5‐5 Shunt‐compensating, mechanically‐switched reactor, connected to a...Figure 5‐6 Exchanged reactive power (Qsh), the resulting voltages (v1A and VFigure 5‐7 Series‐compensating, mechanically‐switched reactors, connected in...Figure 5‐8 Exchanged reactive power (Qse), the resulting voltage (v12A), cur...Figure 5‐9 Instantaneous filtered magnitude of the voltage across the series...Figure 5‐10 Instantaneous filtered phase angle of the voltage across the ser...Figure 5‐11 Instantaneous magnitude (idq) of the current through the series‐...Figure 5‐12 Instantaneous phase angle (θidq) of the current through the...Figure 5‐13 Instantaneous magnitude (zse) of the impedance of the series‐com...Figure 5‐14 Instantaneous phase angle (θzse) of the voltage across the ...Figure 5‐15 Instantaneous relative phase angle (β) of the series‐compen...Figure 5‐16 Two superimposed voltages: (1) A phase of the calculated compens...Figure 5‐17 Series‐compensating, mechanically‐switched capacitor with a reac...Figure 5‐18 Exchanged reactive power (Qse), the resulting voltage (v12A), cu...Figure 5‐19 Series‐compensating voltage to emulate a reactor in series with ...Figure 5‐20 Validation of a series‐compensating voltage as an emulated react...
6 Chapter 6Figure 6‐1 (a) Two‐generator/one‐line uncompensated power system network; (b...Figure 6‐2 (a) Two‐generator/one‐line power system network with a series‐com...Figure 6‐3 Transformer/LTCs‐based solutions for power flow controllers using...Figure 6‐4 (a) Voltage‐Regulating Transformer (Shunt‐Series configuration); ...Figure 6‐5 (a) Voltage‐Regulating Transformer (Shunt‐Shunt configuration); (...Figure 6‐6 (a) Phase Angle Regulator (asymmetric); (b) phasor diagram.Figure 6‐7 (a, b) Effect of a series‐compensating voltage on power flow in a...Figure 6‐8 (a) Voltage‐Regulating Transformer for increasing line voltage; (...Figure 6‐9 (a) Voltage‐Regulating Transformer for decreasing line voltage; (...Figure 6‐10 (a) ST for voltage regulation; (b) phasor diagram.Figure 6‐11 (a) ST for voltage compensation with