Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers. Kalyan K. Sen
Чтение книги онлайн.

Читать онлайн книгу Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers - Kalyan K. Sen страница 37

СКАЧАТЬ the underutilized lines. This can only be possible through a dynamic line impedance management, which results in independent control of active and reactive power flows in the transmission lines. Independent control of active and reactive power flows leads to

       Reduction in reactive power flow, resulting in a reduction of losses in generators, transformers, and transmission lines, which increases the overall efficiency of the grid, thus lowering GHG emissions and reducing global warming

       Freeing up the generators, transformers, and transmission lines to carry more active power

       Power flow through the desired transmission paths that have high impedances, low power flow, and low line utilization

       Avoidance of grid congestion by redirecting excess power flow from an overloaded line to underloaded lines, instead of tripping the overloaded line and creating possible blackouts when power flow is needed the most, thus improving grid reliability and resiliency, and

       Delayed construction of new, expensive, high‐voltage electric transmission lines.

      The SPFC is proposed to enhance the controllability of the power flow in the power grid on the basis of functional requirements and cost‐effective solutions. The SPFC is derived from utilizing the best features of all the technical concepts that are developed in the power flow control area until now. In the simplest term, a SMART Controller is what one procures is based on what one needs. Utilities are recommended to choose a solution that meets their need in terms of reliability, cost‐effectiveness, component non‐obsolescence, efficiency, ease of relocation, and interoperability.

      The Sen Transformer technology meets the immediate need of the utility in terms of maximizing the revenue‐generating active power flow while providing the highest efficiency. The ST uses transformers and mechanical LTCs and offers high reliability, high efficiency, low cost, component non‐obsolescence, high power density, small footprint, and ease of relocation. The ST allows the utilities to avoid the initial purchase of an expensive PFC, along with the equally high cost of replacing a power electronics inverter‐based system as it becomes obsolete. In addition to being a smaller, more dynamic, and customizable system that is less costly to maintain, the ST can be relocated to adapt to changing power system needs. Since ST uses existing transformer/LTCs‐based technology, it offers a high level of interoperability, enabling components from various suppliers to be used for its manufacturing, operation, and maintenance. This also ensures a baseline global manufacturing standard, which increases the confidence of the consumer about the end product.

      The power electronics inverter‐based technology has the capability of providing fast (sub‐cycle) dynamic response for a given transmission line impedance, although in a PFC, the dynamic response of at least a few line cycles is necessary to operate safely under various contingencies. Most utility applications allow regulation of the power flow in the line(s) in a “slow” manner as permitted by the speed of operation of the mechanical LTCs. Applications that require faster response times can make use of TC LTCs, instead of mechanical LTCs as shown in Figure 2‐51. The STs with both types of LTCs (mechanical and TC) cover a wide range of requirements for power flow control in electric transmission lines. If the LTCs are too coarse for an IR, the number of taps on the winding may be increased.

      The ST can be customized to operate in a limited‐angle range that is suitable for a particular application. This reduces the number of secondary windings from nine to six and the number of three‐phase LTCs from three to two. Consequently, the cost of an ST can be reduced due to its simpler design, whereas there is no such option for the reduction of cost in a power electronics inverter‐based FACTS controller. The inverter is always designed to operate in the entire 360°‐range of series‐injection of a compensating voltage whether a particular application needs it or not.

      Compared to the UPFC, the ST has inherent advantages: less costly, component non‐obsolescence, portable, and reduced and easy maintenance along with many other features. The value proposition to the customer is that in comparison to a FACTS controller, a 5:1 reduction in equipment cost and a 10:1 reduction in operational/maintenance cost of an ST are expected. The ST provides 21st‐century power flow control solutions with an impedance regulation using 20th‐century power hardware, such as transformer/LTCs, which are proven to be reliable to the utilities worldwide and reduce the likelihood of obsolescence.

      Modeling, also referred to as the simulation of an actual installation, is essential prior to the realization of a concept in the form of a full‐scale implementation. Modeling is the key to understand the subject of an SPFC in the most cost‐effective way. Various modeling techniques, which were successfully used during the development of the first generation of FACTS Controllers and numerous additional power system applications, are discussed throughout the book. It is important to note that a model is just an approximation of the actual equipment. A model, in its simplest form, can be of a first‐order approximation to provide a Rough‐Order Magnitude data of interest. A design‐query can be answered by increasing the level of details in a model.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SaGUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA AABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JE YXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAA AAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNy b3BXaGVuUHJpbnRpbmdib29sAAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0 TGVmdGxvbmcAAAAAAAAADWNyb3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcA AAAAADhCSU0D7QAAAAAAEAEsAAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AA ADhCSU0EDQAAAAAABAAAAFo4QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhC SU0nEAAAAAAACgABAAAAAAAAAAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEA oZmaAAYAAAAAAAEAMgAAAAEAWgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAA AHAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gA AAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAA OEJJTQQIAAAAAAAQAAAAAQAAAkAAAAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA08A AAAGAAAAAAAAAAAAAAwDAAAIkwAAAA0AOQA3ADgAMQAxADEAOQA4ADIANAAzADUAMAAAAAEAAAAA AAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAIkwAADAMAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAA AAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51b СКАЧАТЬ