Название: Superatoms
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Химия
isbn: 9781119619567
isbn:
102 102 Schmid, G. (2008). The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37: 1909–1930.
103 103 Verlet, J.R.R. (2008). Femtosecond spectroscopy of cluster anions: insights into condensed‐phase phenomena from the gas‐phase. Chem. Soc. Rev. 37: 505–517.
104 104 Fischer, I. (2003). Time‐resolved photoionization of radicals, clusters and biomolecules: relevant model systems. Chem. Soc. Rev. 32: 59–69.
105 105 Kostakis, G.E., Ako, A.M., and Powell, A.K. (2010). Structural motifs and topological representation of Mn coordination clusters. Chem. Soc. Rev. 39: 2238–2271.
106 106 Schubert, U. (2011). Cluster‐based inorganic‐organic hybrid materials. Chem. Soc. Rev. 40: 575–582.
107 107 Long, D.‐L., Burkholder, E., and Cronin, L. (2007). Polyoxometalate clusters, nanostructures and materials: from self‐assembly to designer materials and devices. Chem. Soc. Rev. 36: 105–121.
108 108 Rozes, L. and Sanchez, C. (2011). Titanium oxo‐clusters: precursors for a Lego‐like construction of nanostructured hybrid materials. Chem. Soc. Rev. 40: 1006–1030.
109 109 Cabeza, J.A. and Garcia‐Alvarez, P. (2011). The N‐heterocyclic carbene chemistry of transition‐metal carbonyl clusters. Chem. Soc. Rev. 40: 5389–5405.
110 110 Sculfort, S. and Braunstein, P. (2011). Intramolecular d10‐d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 40: 2741–2760.
111 111 Lu, Z. and Yin, Y. (2012). Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev. 41: 6874–6887.
112 112 Lu, Y. and Chen, W. (2012). Sub‐nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41: 3594–3623.
113 113 Olid, D., Nunez, R., Vinas, C., and Teixidor, F. (2013). Methods to produce B‐C, B‐P, B‐N and B‐S bonds in boron clusters. Chem. Soc. Rev. 42: 3318–3336.
114 114 Fuhr, O., Dehnen, S., and Fenske, D. (2013). Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42: 1871–1906.
115 115 Sterenberg, B.T., Scoles, L., and Carty, A.J. (2002). Synthesis, structure, bonding and reactivity in clusters of the lower phosphorus oxides. Coord. Chem. Rev. 231: 183–197.
116 116 LaViolette, R.A. and Benson, M.T. (2012). Structure and thermodynamics of phosphorus oxide caged clusters. J. Struct. Chem. 53: 48–54.
117 117 Sokolov, M.N. and Fedin, V.P. (2004). Chalcogenide clusters of vanadium, niobium and tantalum. Coord. Chem. Rev. 248: 925–944.
118 118 Thompson, L.K., Waldmann, O., and Xu, Z. (2005). Polynuclear manganese grids and clusters—a magnetic perspective. Coord. Chem. Rev. 249: 2677–2690.
119 119 Alexandrova, A.N., Boldyrev, A.I., Zhai, H.‐J., and Wang, L.‐S. (2006). Allboron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250: 2811–2866.
120 120 Armelao, L., Barreca, D., Bottaro, G. et al. (2006). Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord. Chem. Rev. 250: 1294–1314.
121 121 Huang, Y.‐G., Jiang, F.‐L., and Hong, M.‐C. (2009). Magnetic lanthanide−transition‐metal organic−inorganic hybrid materials: from discrete clusters to extended frameworks. Coord. Chem. Rev. 253: 2814–2834.
122 122 Llusar, R. and Vicent, C. (2010). Trinuclear molybdenum cluster sulfides coordinated to dithiolene ligands and their use in the development of molecular conductors. Coord. Chem. Rev. 254: 1534–1548.
123 123 Glover, S.D., Goeltz, J.C., Lear, B.J., and Kubiak, C.P. (2010). Inter‐ or intramolecular electron transfer between triruthenium clusters: we’ll cross that bridge when we come to it. Coord. Chem. Rev. 254: 331–345.
124 124 Shieh, M., Miu, C.‐Y., Chu, Y.‐Y., and Lin, C.‐N. (2012). Recent progress in the chemistry of anionic groups 6−8 carbonyl chalcogenide clusters. Coord. Chem. Rev. 256: 637–694.
125 125 Kostakis, G.E., Perlepes, S.P., Blatov, V.A. et al. (2012). High‐nuclearity cobalt coordination clusters: synthetic, topological and magnetic aspects. Coord. Chem. Rev. 256: 1246–1278.
126 126 Mayasree, O., Sankar, C.R., Kleinke, K.M., and Kleinke, H. (2012). Cu clusters and chalcogenchalcogen bonds in various copper polychalcogenides. Coord. Chem. Rev. 256: 1377–1383.
127 127 Sokolov, M.N. and Abramov, P.A. (2012). Chalcogenide clusters of Groups 8−10 noble metals. Coord. Chem. Rev. 256: 1972–1991.
128 128 Hong, K. and Chun, H. (2013). Nonporous titanium−oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 52: 9705–9707.
129 129 Brack, M. (1993). The physics of simple metal clusters: self‐consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65: 677–732.
130 130 de Heer, W.A. (1993). The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65: 611–676.
131 131 Jensen, P. (1999). Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71: 1695–1735.
132 132 Herschbach, D. (1999). Chemical physics: molecular clouds, clusters, and corrals. Rev. Mod. Phys. 71: S411–S418.
133 133 Maier, T., Jarrell, M., Pruschke, T., and Hettler, M.H. (2005). Quantum cluster theories. Rev. Mod. Phys. 77: 1027–1080.
134 134 Fennel, T., Meiwes‐Broer, K.H., Tiggesbäumker, J. et al. (2010). Laser‐driven nonlinear cluster dynamics. Rev. Mod. Phys. 82: 1793–1842.
135 135 Einax, M., Dieterich, W., and Maass, P. (2013). Colloquium: cluster growth on surfaces: densities, size distributions, and morphologies. Rev. Mod. Phys. 85: 921–939.
136 136 Furrer, A. and Waldmann, O. (2013). Magnetic cluster excitations. Rev. Mod. Phys. 85: 367–420.
137 137 Khanna, S.N. and Jena, P. (1992). Assembling crystals from clusters. Phys. Rev. Lett. 69: 1664–1667.
138 138 Khanna, S.N. and Jena, P. (1995). Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51: 13705–13716.
139 139 Knight, W.D., Clemenger, K., de Heer, W.A. et al. (1984). Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52: 2141–2144.
140 140 Jena, P. (2013). Beyond the periodic table of elements: the role of superatoms. J. Phys. Chem. Lett. 4: 1432.
141 141 Leuchtner, R.E., Harms, A.C., and Castleman, A.W. Jr. (1989). Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J. Chem. Phys. 91: 2753.
142 142 Li, X., Wu, H., Wang, X.B., and Wang, L.S. (1998). s−p Hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopic study. Phys. Rev. Lett. 81: 1909–1912.
143 143 Rao, B.K. and Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111: 1890.
144 144 СКАЧАТЬ