Название: Semantic Web for Effective Healthcare Systems
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Программы
isbn: 9781119764151
isbn:
53. Saif, H., He, Y., Alani, H., Contextual semantics for sentiment analysis of Twitter. Inf. Process. Manage., 52, 1, 5–19, 2016.
54. Liu, B., Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers, San Rafael, California, USA, 2012.
55. Astudillo, R.F., Amir, S.F., Ling, W., Martins, B., Silva, M., Trancoso, I., INESC-ID: A regression model for large scale twitter sentiment lexicon induction. Association for Computational Linguistics, Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Colorado, pp. 613–618, 2015.
56. Zhang, W., Yoshida, T., Tang, X., A comparative study of TF_IDF, LSI and multi-words for text classification. Expert Syst. Appl., 38, 2758–2765, 2011.
57. Kumar, A. and Srinivas, S., On the performance Latent Semantic Indexing-based Information Retrieval. J. Comput. Inf. Technol., 3, 259–264, 2009.
58. Blei, D.M., Ng, A.Y., Jordan, M.I., Latent Dirichlet Allocation. J. Mach. Learn. Res., 3, 993–1022, 2003.
59. Griffiths, T.L. and Steyvers, M., Finding scientific topics. PNAS, 101, 1, 5228– 5235, 2004.
60. Binkley, D., Heinz, D., Lawrie, D., Overfelt, J., Understanding LDA in source code analysis. Proceedings of 22nd International Conference on Programme Comprehension ICPC, Hyderabad, India, vol. 14, pp. 26–36, 2014.
61. Liu, B., Web Data Mining, Springer, New York, USA, 2007.
62. Robert, J.D., An examination of consumer criteria for choosing hospital services, 1995. Available from: http://library3.sage.edu/archive/thesis/MGT/MGT-d255-dam-ane.pdf, pp. 1–41, January 2016.
63. Agarwal, P. and Janssens, B., Power to the patient: A new growth paradigm for Indian providers. BCG. perspectives, 2014. Vol. 1, pp.1–2. Available from: <https://www.bcgperspectives.com/content/articles/health_care_payers_providers_power_to_patient_new_growth_paradigm_for_indian_providers/>. [9-Nov-2015].
64. Kang, H., Yoo, S.J., Han, D., Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Syst. Appl., 39, 5, 6000–6010, 2012. Elsevier.
1 *Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.