Genetic Analysis of Complex Disease. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Genetic Analysis of Complex Disease - Группа авторов страница 26

Название: Genetic Analysis of Complex Disease

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119104070

isbn:

СКАЧАТЬ a population‐based study examining the contribution of sickle cell disease to the occurrence of developmental disabilities, the Miettinen formula (Equation 3.2) was applied to demonstrate that 34% of the cases of stroke‐related developmental disabilities in black children were due to sickle cell disease (Ashley‐Koch et al. 2001). In this example, the fraction of cases with stroke‐related disabilities with the risk factor (sickle cell disease) was 0.34 (13 children with sickle cell disease among a total of 38 children with stroke‐related developmental disabilities), and the relative risk was 130. Thus, the attributable fraction by the Miettinen formula is 34% (0.34 * (129/130)).

      For all the ease with the family history approach, there are several pitfalls that may occur. One should be aware that a positive family history is a function of many things, including the frequency of the condition in the general population, the size of the family, the natural history of the condition, the underlying genetic mechanism, and possibly shared environmental exposures. For example, if a condition is relatively common in the population, a positive family history may simply result from the presence of phenocopies in the family. Also, in a condition with late onset, young relatives may be misclassified as “disease‐free” (i.e. they may not express the condition simply because they are too young to express it). For example, if one is studying Alzheimer disease and finds that a 55‐year‐old sibling of an affected proband has no signs of dementia, one should re‐examine that sibling at regular intervals to determine if he/she remains asymptomatic over time. It is possible that, at the age of 55 years, the sibling is too young to express symptoms. However, if he/she were re‐examined at 60 years of age, he/she would exhibit symptoms. Thus, if the only physical examination for that sibling was performed at 55 years of age, he/she would be classified as “normal.” But if another physical examination was performed at the age of 60 years, then the individual would be classified as “affected.” Thus, whenever resources allow, follow study participants over time for changes in affection status. In addition to variation in the age of onset of a condition, there may be variable expression of the condition. Therefore, family members who have minor manifestations of the condition or are in the early stages of the disease process may not be recognized as expressing the condition. Furthermore, in complex genetic disorders, individuals in the family may not express the disorder because they possess only a fraction of the necessary genetic and environmental factors to express the condition. For all these reasons, one may want to examine the association of family history with several types of relatives in order to make sure that the same conclusion is reached for all relative types.

      Correlation Coefficients

      Twin and Adoption Studies

      Twin and adoption studies can be quite useful as they provide an opportunity to tease apart the role of genetics and a common familial environment. The most difficult aspect of these types of studies is obtaining reasonable sample sizes. This is especially true in the United States where twin, adoption, and disease registries are less common than in European countries.

      The premise of twin studies is the comparison of the disease concordance in monozygotic (MZ) with dizygotic (DZ) twins. Since MZ twins share 100% of their genetic make‐up and DZ twins share on average 50% of their genetic make‐up, a greater disease concordance in MZ compared with DZ twins is consistent with the involvement of genetics. An advantage of this approach is that it controls for a common familial environment, but this is generally only applicable for exposures during childhood. It may not entirely control for prenatal exposures because the twins, especially DZ, may not have shared placentas, chorions, and amniotic sacs. However, the intrauterine and extrauterine environments are generally more similar for DZ twins than siblings. It is even less likely that adult exposures are similar among the twins, especially if they reside in different geographic locations. Other possible confounding variables controlled for in the twin study approach include age and sex (provided same‐sex DZ twins are utilized). However, keep in mind that for a condition with variable age of onset, it may be necessary to follow the twins for several years in order to conclusively determine that a set of twins is concordant or discordant for the condition. But most importantly, prior to beginning any twin study, one must determine the zygosity of the twins, as misclassification can have a devastating effect on the outcome of the analysis (Ellsworth et al. 1999). Often families will know the zygosity of the twins, but it is prudent to determine this experimentally via genotyping.

Frequency of disease concordance in twins
MZ (%) DZ (%) Possible etiology
85 85 Common familial environment
100 25 Mendelian recessive genetic factor
100 50 СКАЧАТЬ