Organic Corrosion Inhibitors. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Organic Corrosion Inhibitors - Группа авторов страница 24

Название: Organic Corrosion Inhibitors

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Техническая литература

Серия:

isbn: 9781119794509

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#fb3_img_img_39db613b-333a-5fe2-adba-80022895d4a6.png" alt="upper I upper P equals minus upper E Subscript upper H upper O upper M upper O"/>

      (3.4)upper E upper A equals minus upper E Subscript upper L upper U upper M upper O

      Further, the energy difference between LUMO and HOMO called an energy gap (ΔE) is also an essential parameter toward the description of reactivity of a molecule.

      (3.5)upper Delta upper E equals upper E Subscript upper L upper U upper M upper O Baseline minus upper E Subscript upper H upper O upper M upper O

      A large value of ΔE indicates low reactivity of molecules while a molecule with low value of ΔE can be strongly adsorbed on a metal surface.

      3.2.2.3 Electronegativity (ɳ), Chemical Potential (μ), Hardness (η), and Softness (σ) Indices

      (3.6)mu equals negative chi equals left-bracket StartFraction partial-differential upper E Over partial-differential upper N EndFraction right-bracket Subscript nu left-parenthesis r right-parenthesis Baseline equals minus left-parenthesis StartFraction upper I upper P plus upper E upper A Over 2 EndFraction right-parenthesis

      (3.7)eta equals one half left-bracket StartFraction partial-differential squared upper E Over partial-differential upper N squared EndFraction right-bracket Subscript nu left-parenthesis r right-parenthesis Baseline equals StartFraction upper I upper P minus upper E upper A Over 2 EndFraction

      (3.8)sigma equals 1 slash eta

      3.2.2.4 Electron‐Donating Power (ω) and Electron‐Accepting Power (ω+)

      The new parameters called ω and ω+ were introduced by Gazquez et al. [36] to predict the propensity of chemical species to accept and to donate electrons. Also, these two parameters are related to IP and EA and are mathematically described via the following equations:

      (3.9)omega Superscript plus Baseline equals StartFraction left-parenthesis upper I upper P plus 3 upper E upper A right-parenthesis squared Over 16 left-parenthesis upper I upper P minus upper E upper A right-parenthesis EndFraction

      (3.10)omega Superscript minus Baseline equals StartFraction left-parenthesis 3 upper I upper P plus upper E upper A right-parenthesis squared Over 16 left-parenthesis upper I upper P minus upper E upper A right-parenthesis EndFraction

      Based on these parameters, we can, again, shed light on the inhibition abilities of chemical compounds based on their ability to accept and receive electrons.

      3.2.2.5 The Fraction of Electrons Transferred (ΔN)

      For the prediction of ΔN, which reflects the tendency of an inhibitor molecule to transfer its electron to a metal surface, the hardness and electronegativity indices have been used. This parameter was computed according to Pearson as per the following equation [35]:

      (3.11)upper Delta upper N equals StartFraction empty-set minus chi Subscript i n h Baseline Over 2 left-parenthesis eta Subscript m e t a l Baseline plus eta Subscript i n h Baseline right-parenthesis EndFraction

      In this equation, ∅ is the work function calculated for metal surface and ηmetal means the global hardness of the metal.

      The fraction of electrons transferred provides important insight into the adsorption process and the power of the interaction between the metal surface and inhibitor molecule. Consistent with the literature [37–39], an inhibitor can transfer its electron if ΔN > 0 and vice versa if ΔN < 0.

      3.2.2.6 Fukui Indices (FIs)

      Fukui functions offer unique opportunities to increase the fundamental understanding of the local reactivity and selectivity of chemical species. In other words, Fukui function is a local reactivity index proposed to examine the nucleophilic and electrophilic attack regions of inhibitor molecules. In fact, from this important concept (FIs), we can pinpoint the reactive sites in which the electrophilic or nucleophilic attacks are large or small. As discussed above, HSAB theory provides an important contribution in the prediction and interpretation of many CQ parameters, and the judgment of Fukui functions is also an early attempt in this direction. It is necessary here to clarify exactly what is meant by Fukui function f(r). By definition, f(r) is a first derivative of 𝜌(r) with respect to number of electrons (N) at a constant external potential v(r).

      (3.12)f left-parenthesis r right-parenthesis equals left-parenthesis StartFraction partial-differential rho left-parenthesis r right-parenthesis Over partial-differential upper N EndFraction right-parenthesis Subscript v left-parenthesis r right-parenthesis

      In addition, FIs were identified with respect to hard or soft reagents by involving the HSAB principle. A simple approximation can be used with the aid of finite difference approximation and Mulliken's population analysis in which FIs were determined as per the following equations [40]:

      (3.13)f Subscript upper K Baseline Superscript plus Baseline equals q Subscript upper K Baseline left-parenthesis upper N plus 1 right-parenthesis minus q Subscript upper K Baseline left-parenthesis upper N right-parenthesis normal left-parenthesis f o r n u c l e o p h i l i c a t t a c k right-parenthesis

      (3.14)f Subscript upper K Baseline Superscript minus Baseline equals q Subscript upper K Baseline left-parenthesis upper N right-parenthesis minus q Subscript upper K Baseline left-parenthesis upper N minus 1 right-parenthesis normal normal left-parenthesis f o r e l e c t r o p h i l i c a t t a c k right-parenthesis

      (3.15)f Subscript upper K Baseline Superscript 0 Baseline equals StartFraction q Subscript upper K Baseline left-parenthesis upper N plus 1 right-parenthesis minus q Subscript 
              <a href=СКАЧАТЬ