Название: Organic Corrosion Inhibitors
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119794509
isbn:
30 30 Jensen, F. (2017). Introduction to Computational Chemistry. John wiley & sons.
31 31 Frank, J. (October 1999). Introduction to Computational Chemistry. Editorial Offices.
32 32 Young, D. (2004). Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. John Wiley & Sons.
33 33 Chong, D.P. (1995). Recent Advances in Density Functional Methods. World Scientific.
34 34 Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1: 104–113.
35 35 Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105: 7512–7516.
36 36 Morell, C., Gázquez, J.L., Vela, A. et al. (2014). Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors. Physical Chemistry Chemical Physics 16: 26832–26842.
37 37 Lukovits, I., Kalman, E., and Zucchi, F. (2001). Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57: 3–8.
38 38 Lgaz, H., Chung, I.M., Albayati, M.R. et al. (2020). Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: an experimental and computational study. Arabian Journal of Chemistry 13: 2934–2954.
39 39 Lgaz, H., Salghi, R., Masroor, S. et al. (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic‐scale DFT and atomic‐scale molecular dynamics. Journal of Molecular Liquids 308: 112998.
40 40 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters 77: 3865.
41 41 Meller, J.A. Molecular Dynamics, e LS (2001).
42 42 Hansson, T., Oostenbrink, C., and van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology 12: 190–196.
43 43 Allen, M.P. (2004). Introduction to molecular dynamics simulation. Computational Soft Matter: From Synthetic Polymers to Proteins 23: 1–28.
44 44 Binder, K., Horbach, J., Kob, W. et al. (2004). Molecular dynamics simulations. Journal of Physics: Condensed Matter 16: S429.
45 45 Rapaport, D.C. (2004). The Art of Molecular Dynamics Simulation. Cambridge university press.
46 46 Mathews, D.H., Sabina, J., Zuker, M., and Turner, D.H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of molecular biology 288: 911–940.
47 47 Zuker, M. (2000). Calculating nucleic acid secondary structure. Current opinion in structural biology 10: 303–310.
48 48 Berendsen, H.J. (1999). Molecular dynamics simulations: The limits and beyond. In: Computational Molecular Dynamics: Challenges, Methods, Ideas (eds. M. Griebel, D.E. Keyes, R.M. Nieminen, et al.), 3–36. Springer.
49 49 Jensen, B. (2016). Investigation into the Impact of Solid Surfaces in Aqueous Systems. University of Bergen.
50 50 Obot, I., Haruna, K., and Saleh, T. (2019). Atomistic simulation: a unique and powerful computational tool for corrosion inhibition research. Arabian Journal for Science and Engineering 44: 1–32.
51 51 Casewit, C.J., Colwell, K.S., and Rappe, A.K. (1992). Application of a universal force field to main group compounds. Journal of the American Chemical Society 114: 10046–10053.
52 52 Rappe, A.K., Casewit, C.J., Colwell, K.S. et al. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society 114: 10024–10035.
53 53 Hagler, A.T., Huler, E., and Lifson, S. (1974). Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. Journal of the American Chemical Society 96: 5319–5327.
54 54 Hagler, A.T. and Lifson, S. (1974). Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. Journal of the American Chemical Society 96: 5327–5335.
55 55 Lifson, S., Hagler, A.T., and Dauber, P. (1979). Consistent force field studies of intermolecular forces in hydrogen‐bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot..cntdot..cntdot.H‐ hydrogen bonds. Journal of the American Chemical Society 101: 5111–5121.
56 56 Brooks, C.L. (1989). Computer simulation of liquids. Journal of Solution Chemistry 18: 99–99.
57 57 Bahlakeh, G., Ramezanzadeh, M., and Ramezanzadeh, B. (2017). Experimental and theoretical studies of the synergistic inhibition effects between the plant leaves extract (PLE) and zinc salt (ZS) in corrosion control of carbon steel in chloride solution. Journal of Molecular Liquids 248: 854–870.
58 58 Chafai, N., Chafaa, S., Benbouguerra, K. et al. (2017). Synthesis, characterization and the inhibition activity of a new alpha‐aminophosphonic derivative on the corrosion of XC48 carbon steel in 0.5 M H2SO4: Experimental and theoretical studies. Journal of the Taiwan Institute of Chemical Engineers 70: 331–344.
59 59 Deyab, M.A., Osman, M.M., Elkholy, A.E., and Heakal, F.E. (2017). Green approach towards corrosion inhibition of carbon steel in produced oilfield water using lemongrass extract. RSC Advances 7: 45241–45251.
60 60 Fouda, A.S., Ismail, M.A., Abousalem, A.S., and Elewady, G.Y. (2017). Experimental and theoretical studies on corrosion inhibition of 4‐amidinophenyl‐2,2 '‐bifuran and its analogues in acidic media. RSC Advances 7: 46414–46430.
61 61 Heakal, F.E., Attia, S.K., Rizk, S.A. et al. (2017). Synthesis, characterization and computational chemical study of novel pyrazole derivatives as anticorrosion and antiscalant agents. Journal of Molecular Structure 1147: 714–724.
62 62 Lgaz, H., Salghi, R., Jodeh, S., and Hammouti, B. (2017). Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. Journal of Molecular Liquids 225: 271–280.
63 63 Meng, Y., Ning, W.B., Xu, B. et al. (2017). Inhibition of mild steel corrosion in hydrochloric acid using two novel pyridine Schiff base derivatives: a comparative study of experimental and theoretical results. RSC Advances 7: 43014–43029.
64 64 Roy, P., Saha, S.K., Banerjee, P. et al. (2017). Experimental and theoretical investigation towards anti‐corrosive property of glutamic acid and poly‐gamma‐glutamic acid for mild steel in 1 M HCl: intramolecular synergism due to copolymerization. Research on Chemical Intermediates 43: 4423–4444.
65 65 Sanaei, Z., Bahlakeh, G., and Ramezanzadeh, B. (2017). Active corrosion protection of mild steel by an epoxy ester coating reinforced with hybrid organic/inorganic green inhibitive pigment. Journal of Alloys and Compounds 728: 1289–1304.
66 66 Srivastava, V., Haque, J., Verma, C. et al. (2017). Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies. Journal of Molecular Liquids 244: 340–352.
67 67 Zhang, C. and Zhao, J.M. (2017). Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution. Corrosion Science 126: 247–254.
68 68 СКАЧАТЬ