Название: Лекции о Лейбнице. 1980, 1986/87
Автор: Жиль Делёз
Жанр: Философия
isbn: 978-5-91103-185-5
isbn:
Есть и еще одна пара понятий, используемых математиками, и это «примечательное» и «обыкновенное». Математики говорят нам, что существуют сингулярности примечательные и сингулярности, которые примечательными не являются. Но для нашего удобства Лейбниц еще не проводит этого различения между сингулярным непримечательным и сингулярным примечательным; Лейбниц использует как эквиваленты «сингулярное», «примечательное» и «заметное». Так что если вы обнаружите у Лейбница слово «заметное», считайте, что здесь необходимо вглядеться, что это не означает «хорошо известное»; Лейбниц увеличивает это слово, наделяя его необычным значением. Когда он заговорит о заметном восприятии, поймите, что он имеет в виду нечто важное. Какой интерес в этом для нас? Дело в том, что математика по отношению к логике уже представляет собой некий поворот. Математическое употребление концепта «сингулярность» ориентирует сингулярность на отношения с обычным, или регулярным, а уже не с универсальным. Нас приглашают отличать то, что является сингулярным, от того, что является обычным, или регулярным. Какой нам от этого интерес? Представьте себе, что кто-то говорит: это не имеет силы для философии, так как теория истины всегда ошибается; относительно мысли мы прежде всего задавались вопросом, что в ней истинного и что ложного; но ведь вы знаете: в мысли идут в счет не истинное и ложное, а сингулярное и обычное. Что в мысли сингулярное, что приметное, что обыкновенное. Ну вот: что обыкновенное? Я думаю о Кьеркегоре, который – гораздо позднее Лейбница – скажет, что философия всегда пренебрегала важностью одной категории и это категория интересного! Может быть, это и неверно, что философия пренебрегала ею; существует по меньшей мере философско-математическое понятие сингулярности, и, может быть, оно скажет нам что-нибудь интересное о концепте интересного.
Важный математический ход состоял в том, что сингулярность больше не мыслилась по отношению к универсальному; дело в том, что она мыслилась по отношению к обыкновенному, или к регулярному. Сингулярное есть то, что выходит за рамки обыкновенного и регулярного. И если мы это скажем, то уже это уведет нас очень далеко, так как если мы это скажем, то превратим сингулярность в философский концепт, даже если мы найдем основания сделать это в такой благоприятной области, как математика. Однако в каком случае математика говорит нам о сингулярном и обыкновенном? Ответ прост: в связи с определенными точками, взятыми на кривой. Необязательно на кривой, но гораздо обобщеннее мы говорим о некоей фигуре, и о фигуре этой можно сказать, что характер ее таков, что она может включать сингулярные точки и другие, регулярные, или обычные. Зачем же нам эта фигура? Затем, что фигура есть нечто детерминированное! И тогда сингулярное и обычное – это часть детерминации: взгляните-ка, как это интересно! Вы видите, что, когда мы ничего не говорим и топчемся на месте, мы продвигаемся далеко вперед. Почему бы не определить детерминацию СКАЧАТЬ