Лекции о Лейбнице. 1980, 1986/87. Жиль Делёз
Чтение книги онлайн.

Читать онлайн книгу Лекции о Лейбнице. 1980, 1986/87 - Жиль Делёз страница 24

Название: Лекции о Лейбнице. 1980, 1986/87

Автор: Жиль Делёз

Издательство:

Жанр: Философия

Серия:

isbn: 978-5-91103-185-5

isbn:

СКАЧАТЬ – но ведь одна из весьма обобщенных и гениальных пропозиций Лейбница такова: разум Бога, бесконечный анализ, – и тогда что такое все это? И наконец, когда речь заходит о том, чтобы показать, в чем истины существования несводимы к математическим истинам, когда речь заходит о том, чтобы показать это конкретно, все, что Лейбниц говорит убедительного, сводится к математике. Забавно, не так ли?

      Какой-нибудь «записной отрицатель» скажет Лейбницу: ты объявляешь нам, что говоришь о несводимости истин существования, а несводимость эту ты можешь определить конкретно, лишь используя сугубо математические понятия… И что ответил бы Лейбниц? «Во всевозможных текстах меня всегда заставляли говорить, что дифференциальное исчисление обозначает некую реальность. Я никогда не утверждал этого, – отвечает Лейбниц, – дифференциальное исчисление есть хорошо обоснованная условность». Лейбниц придает колоссальное значение тому, что дифференциальное исчисление лишь символическая система, она не «вычерчивает» никакой реальности, она обозначает способ отношения к реальности. А хорошо обоснованная условность – что такое? Не по отношению к реальности это условность, а по отношению к математике. Здесь нет никакого противоречия. Дифференциальное исчисление есть нечто символическое, но по отношению к математической реальности, а отнюдь не по отношению к реальной реальности. А вот по отношению к математической реальности система дифференциального исчисления есть вымысел. Лейбниц также употребляет словосочетание «хорошо обоснованный вымысел». Это вымысел, хорошо обоснованный по отношению к реальности математики. Иными словами, дифференциальное исчисление использует концепты, которые не могут обосновываться как с точки зрения классической алгебры, так и с точки зрения арифметики. Это очевидно. Величины, которые представляют собой ничто и которые равны нулю, суть арифметический нонсенс; тут нет ни арифметической, ни алгебраической реальности, это вымысел. Итак, на мой взгляд, Лейбниц отнюдь не имеет в виду того, что дифференциальное исчисление не обозначает ничего реального; он имеет в виду, что дифференциальное исчисление несводимо к математической реальности. Стало быть, в этом смысле перед нами вымысел, но, как раз потому, что это вымысел, Лейбниц может заставить нас помыслить существование этого. Иными словами, дифференциальное исчисление есть своего рода союз математики и существующего, то есть это символика существующего. И как раз потому, что это – хорошо обоснованный вымысел по отношению к математической истине, это еще и основополагающее и реальное средство исследования реально существующего. Вы, стало быть, видите, что означает «исчезающее», «исчезающее различие»: это отношение, которое продолжает существовать, когда исчезли члены отношения. Отношение c, когда c исчезло, то есть совпало с a. Итак, вы построили некую непрерывность с помощью дифференциального исчисления. Лейбниц с полным на то основанием настаивает: поймите, что в разуме Бога СКАЧАТЬ