Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 31

СКАЧАТЬ conductivity and good shape stability for thermal energy storage. Carbon 98: 50–57.

      69 69 Lei, C., Wu, K., Wu, L. et al. (2019). Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. Journal of Materials Chemistry A 7: 19364–19373.

      70 70 Tang, L., Zhao, X., Feng, C. et al. (2019). Bacterial cellulose/MXene hybrid aerogels for photodriven shape‐stabilized composite phase change materials. Solar Energy Materials and Solar Cells 203: 110174.

      71 71 Du, X., Qiu, J., Deng, S. et al. (2020). Flame‐retardant and form‐stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar‐thermal conversion efficiency. Journal of Materials Chemistry A 8: 14126–14134.

      72 72 Fallahi, A., Guldentops, G., Tao, M. et al. (2017). Review on solid–solid phase change materials for thermal energy storage: molecular structure and thermal properties. Applied Thermal Engineering 127: 1427–1441.

      73 73 Xi, P., Xia, L., Fei, P. et al. (2012). Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage. Solar Energy Materials and Solar Cells 102: 36–43.

      74 74 Fu, X., Xiao, Y., Hu, K. et al. (2016). Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)‐based two components: flexible application for thermal energy storage. Chemical Engineering Journal 291: 138–148.

      75 75 Zhou, Y., Liu, X., Sheng, D. et al. (2018). Polyurethane‐based solid–solid phase change materials with in situ reduced graphene oxide for light‐thermal energy conversion and storage. Chemical Engineering Journal 338: 117–125.

      76 76 Meng, Q. and Hu, J. (2008). A poly(ethylene glycol)‐based smart phase change material. Solar Energy Materials and Solar Cells 92: 1260–1268.

      77 77 Xi, P., Zhao, F., Fu, P. et al. (2014). Synthesis, characterization, and thermal energy storage properties of a novel thermoplastic polyurethane phase change material. Materials Letters 121: 15–18.

      78 78 Du, X., Wang, H., Wu, Y. et al. (2017). Solid–solid phase‐change materials based on hyperbranched polyurethane for thermal energy storage. Journal of Applied Polymer Science 134: 45014.

      79 79 Lu, X., Fang, C., Sheng, X. et al. (2019). One‐step and solvent‐free synthesis of polyethylene glycol‐based polyurethane as solid–solid phase change materials for solar thermal energy storage. Industrial & Engineering Chemistry Research 58: 3024–3032.

      80 80 Yang, J., Tang, L.‐S., Bai, L. et al. (2019). High‐performance composite phase change materials for energy conversion based on macroscopically three‐dimensional structural materials. Materials Horizons 6: 250–273.

      81 81 Han, Z. and Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science 36: 914–944.

      82 82 Burger, N., Laachachi, A., Ferriol, M. et al. (2016). Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science 61: 1–28.

      83 83 Apostolopoulou‐Kalkavoura, V., Munier, P., and Bergstrom, L. (2021). Thermally insulating nanocellulose‐based materials. Advanced Materials 33: 2001839.

      84 84 Qian, T., Li, J., Min, X. et al. (2015). Enhanced thermal conductivity of PEG/diatomite shape‐stabilized phase change materials with Ag nanoparticles for thermal energy storage. Journal of Materials Chemistry A 3: 8526–8536.

      85 85 Tang, B., Qiu, M., and Zhang, S. (2012). Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar Energy Materials and Solar Cells 105: 242–248.

      86 86 Zhang, L., An, L., Wang, Y. et al. (2019). Thermal enhancement and shape stabilization of a phase‐change energy‐storage material via copper nanowire aerogel. Chemical Engineering Journal 373: 857–869.

      87 87 Zhang, L. and Feng, G. (2020). A one‐step‐assembled three‐dimensional network of silver/polyvinylpyrrolidone (PVP) nanowires and its application in energy storage. Nanoscale 12: 10573–10583.

      88 88 Wang, Y., Tang, B., and Zhang, S. (2013). Single‐walled carbon nanotube/phase change material composites: sunlight‐driven, reversible, form‐stable phase transitions for solar thermal energy storage. Advanced Functional Materials 23: 4354–4360.

      89 89 Qian, T., Zhu, S., Wang, H. et al. (2019). Comparative study of single‐walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar‐to‐light conversion of PEG‐infiltrated phase‐change material composites. ACS Sustainable Chemistry & Engineering 7: 2446–2458.

      90 90 Qian, T., Li, J., Feng, W., and Nian, H.E. (2017). Single‐walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material. Energy Conversion and Management 143: 96–108.

      91 91 Liu, Z., Wei, H., Tang, B. et al. (2018). Novel light–driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity. Solar Energy Materials and Solar Cells 174: 538–544.

      92 92 Qi, G.‐Q., Yang, J., Bao, R.‐Y. et al. (2015). Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88: 196–205.

      93 93 He, L., Wang, H., Yang, F., and Zhu, H. (2018). Preparation and properties of polyethylene glycol/unsaturated polyester resin/graphene nanoplates composites as form‐stable phase change materials. Thermochimica Acta 665: 43–52.

      94 94 Qian, Y., Han, N., Zhang, Z. et al. (2019). Enhanced thermal‐to‐flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Applied Materials & Interfaces 11: 45832–45843.

      95 95 Wei, X., Xue, F., Qi, X. et al. (2019). Photo‐ and electro‐responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Applied Energy 236: 70–80.

      96 96 Wu, H., Deng, S., Shao, Y. et al. (2019). Multiresponsive shape‐adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid‐coated melamine foam for light/electro‐to‐thermal energy storage and utilization. ACS Applied Materials & Interfaces 11: 46851–46863.

      97 97 Zhang, X., Liu, H., Huang, Z. et al. (2016). Preparation and characterization of the properties of polyethylene glycol @ Si3 N4 nanowires as phase‐change materials. Chemical Engineering Journal 301: 229–237.

      98 98 Wang, W., Yang, X., Fang, Y. et al. (2009). Enhanced thermal conductivity and thermal performance of form‐stable composite phase change materials by using β‐Aluminum nitride. Applied Energy 86: 1196–1200.

      99 99 Tang, B., Wu, C., Qiu, M. et al. (2014). PEG/SiO2–Al2O3 hybrid form‐stable phase change materials with enhanced thermal conductivity. Materials Chemistry and Physics 144: 162–167.

      100 100 Deng, Y., Li, J., and Nian, H. (2018). Polyethylene glycol‐enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: form‐stabilization, thermal energy storage behavior and thermal conductivity enhancement. Solar Energy Materials and Solar Cells 174: 283–291.

      101 101 Luo, F., Yan, P., Qian, Q. et al. (2020). Highly thermally conductive phase change composites for thermal energy storage featuring shape memory. Composites Part A: Applied СКАЧАТЬ