Название: Искусственный интеллект в медицине. Как умные технологии меняют подход к лечению
Автор: Эрик Тополь
Издательство: Альпина Диджитал
Жанр: Медицина
isbn: 9785961474763
isbn:
Рис. 1.2. Экспоненциальный рост скорости вычислений – в 300 тыс. раз – в процессе выполнения различных обучающих ИИ программ. Источник: с изменениями из: D. Hernandez and D. Amodei, “AI and Compute”, Open AI (2018): http://blog.openai.com/ai-and-compute.
Я не верю, что глубокое обучение искусственного интеллекта сделает его способным лечить все болезни и устранять недостатки современного здравоохранения, но список, приведенный в табл. 1.1, дает представление о том, насколько широко можно использовать этот инструмент и насколько реклама преувеличивает его возможности. Со временем искусственный интеллект поможет нам продвинуться в решении всех перечисленных задач, но это будет марафон без финишной черты.
Примеры глубокого обучения демонстрируют его достаточно узкую специфичность: алгоритм, предсказывающий вероятность депрессии, не работает в дерматологии. Эти алгоритмы, построенные по принципу нейронных сетей, зависят от распознавания паттернов, то есть схем-образов, устойчивых наборов признаков, что будет полезно врачам, качество работы которых зависит от способности распознавать и интерпретировать изображения, – например, рентгенологам и патологоанатомам. Таких врачей я называю врачами-«паттернистами». Пусть и реже, но все же довольно часто всем клиницистам приходится в ходе работы так или иначе распознавать образы и выявлять закономерности, и потенциально каждому из них пригодилась бы алгоритмическая поддержка искусственного интеллекта.
Рис. 1.3. Повышение точности работы машинного искусственного интеллекта с изображениями (А) и речью (В). При работе с упорядоченными базами данных и выполнении узконаправленных задач качество работы искусственного интеллекта выше качества работы человека. Источники: график А с изменениями из: V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE (2017); 105 (12), 2295–2329. График B с изменениями из: “Performance Trends in AI,” Word Press Blog (2018): http://srconstantin.wordpress.com/2017/01/28/ performance-trends-in-ai.
По большей части опубликованные примеры глубокого обучения представляют собой валидацию in silico, то есть на компьютерных моделях (что противопоставляется проспективным клиническим испытаниям с участием реальных пациентов). Очень важно отличать одно от другого, СКАЧАТЬ