Искусственный интеллект в медицине. Как умные технологии меняют подход к лечению. Эрик Тополь
Чтение книги онлайн.

Читать онлайн книгу Искусственный интеллект в медицине. Как умные технологии меняют подход к лечению - Эрик Тополь страница 6

СКАЧАТЬ улучшение.

* * *

      Искусственный интеллект исподволь, но все глубже проникает в нашу жизнь. Он уже работает на нас и в быту. ИИ заканчивает за нас слова, когда мы печатаем, дает непрошеные рекомендации в поисковиках, предлагает нам музыку, опираясь на нашу историю прослушиваний, отвечает на наши вопросы и даже выключает свет в квартире. Самой идее искусственного интеллекта более 80 лет, а имя он получил в 1950-е, но лишь недавно начали брать в расчет его потенциальное воздействие на здравоохранение. Многообещающей казалась способность искусственного интеллекта обеспечить многосторонний панорамный взгляд на медицинские данные пациента, улучшить качество принимаемых диагностических и лечебных решений, сократить количество ошибок в диагностике и ненужных исследований, помочь в назначении и интерпретации необходимых анализов и инструментальных исследований, рекомендовать лечение. В основе всего этого лежат данные. Мы уже давно вступили в эпоху больших данных; в настоящее время мир ежегодно производит зеттабайты данных (в каждом зеттабайте секстиллион (1021) байт – достаточно, чтобы заполнить память приблизительно 1 трлн смартфонов). В медицине к массивам больших данных можно отнести нуклеотидную последовательность полного генома, медицинские изображения высокого разрешения и показатели, постоянно считываемые и передаваемые датчиками, которые закреплены на теле пациента. Данные поступают и поступают в колоссальном объеме, однако мы способны обработать лишь ничтожную их долю. Считается, что в лучшем случае 5 %, не больше. Грубо говоря, у нас было что надеть, но некуда в этом пойти – до недавнего времени. Теперь искусственный интеллект обуздал необозримый конгломерат больших данных и заставил его работать.

      Существует множество разновидностей ИИ. Традиционно машинное обучение включает логистическую регрессию, байесовские сети, «метод случайного леса», метод опорных векторов, экспертные системы и множество других инструментов, разработанных для анализа данных. Например, байесовская сеть – это модель, позволяющая оценивать вероятности. Если у меня есть список симптомов, с которыми обратился больной, то такая модель позволяет получить список всех возможных диагнозов с указанием их относительной вероятности. Забавно, что в 1990-е, когда мы составляли деревья решений, чтобы собранные нами данные могли говорить сами за себя (система была рассчитана на «автоанализ», чтобы на выводы не влияли искажения при интерпретации), мы не называли это машинным обучением. Однако теперь этот статистический метод значительно усовершенствован, и к нему относятся с почтением. За последние годы инструментарий ИИ проник в такие важные сетевые модели, как глубокое обучение и стимулированное обучение, оно же обучение с подкреплением (мы подробнее обсудим эти вопросы в главе 4).

      Разновидность ИИ, отвечающего за глубокое обучение, приобрела особую значимость после 2012 г., когда была опубликована статья о распознавании образов[7], СКАЧАТЬ



<p>7</p>

Krizhevsky, A., I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” ACM Digital Library. 2012: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097–1105.