Urban Remote Sensing. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Urban Remote Sensing - Группа авторов страница 30

Название: Urban Remote Sensing

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119625858

isbn:

СКАЧАТЬ San Antonio, Tulsa, and Washington, DC. The DSM data collapsed one year's worth of observations into a single dataset gridded in a pixel size of ~1 km. The year of data matched the year of lidar data collection (Table 2.1); the lidar data were captured on differing dates but all during leaf‐on conditions during the summer months.

      Source: Nghiem et al. (2017).

      Source: Mathews et al. (2019)/Elsevier.

City Analysis year Analysis extent (km2) DSM vs. lidar (r2) DSM vs. lidar trend (r2) DSM trend vs. lidar trend (r2)
Atlanta, GA 2003 79 0.13 0.33 0.77
Austin, TX 2006 390 0.21 0.72 0.98
Buffalo, NY 2004 342 0.14 0.38 0.69
Detroit, MI 2004 347 0.10 0.52 0.81
Los Angeles, CAa 2007 64 0.04* 0.26 0.64
New Orleans, LA 2008 346 0.04 0.21 0.33
San Antonio, TX 2003 640 0.20 0.75 0.97
Tulsa, OK 2008 1329 0.26 0.63 0.84
Washington, DC 2008 8297 0.32 0.66 0.98

      Notes: r2 is coefficient of determination in linear model. All correlations significant with p‐values < 0.01 unless otherwise noted (<0.05*).

      a Insufficient data sample due to limited extent of lidar data.