Flight Theory and Aerodynamics. Joseph R. Badick
Чтение книги онлайн.

Читать онлайн книгу Flight Theory and Aerodynamics - Joseph R. Badick страница 5

Название: Flight Theory and Aerodynamics

Автор: Joseph R. Badick

Издательство: John Wiley & Sons Limited

Жанр: Техническая литература

Серия:

isbn: 9781119772415

isbn:

СКАЧАТЬ 9Figure 9.1 Landing distance graph.Figure 9.2 Forces in equilibrium.Figure 9.3 Forces acting in a power‐off glide.Figure 9.4 Glide ratio vector diagram.Figure 9.5 Jet approach and landing profile.Figure 9.6 FAR landing field length required.Figure 9.7 Stabilized approach for a jet aircraft.Figure 9.8 Approach glide paths.Figure 9.9 Approach glide path views from the flight deck.Figure 9.10 Lift from (a) propellers and (b) turbojets.Figure 9.11 Coefficient of lift comparison for flap extended and retracted p...Figure 9.12 Effect of flaps on final approach.Figure 9.13 Changing angle of attack during landing.Figure 9.14 Improper drift correction.Figure 9.15 Sideslip during crosswind.Figure 9.16 Short‐field approach and landing over an obstacle.Figure 9.17 Soft/rough‐field approach and landing.Figure 9.18 High round out.Figure 9.19 Bouncing during touchdown.Figure 9.20 Porpoising during round out.Figure 9.21 Go‐around procedure.Figure 9.22 Forces on tire: (a) static condition, (b) rolling tire.Figure 9.23 Hydroplaning forces on tire: (a) low speed, (b) medium speed, (c...Figure 9.24 Forces acting on an airplane during landing.Figure 9.25 Aerodynamic braking and wheel braking.Figure 9.26 Normal and friction forces.Figure 9.27 Coefficient of friction versus wheel slippage.Figure 9.28 Effect of runway condition on coefficient of friction.Figure 9.29 Thrust reversers.Figure 9.30 Effect of wind on landing.Figure 9.31 Effect of headwind during landing approach.

      10 Chapter 10Figure 10.1 Effect of sweepback on CLα curves.Figure 10.2 Regions of normal and reversed command.Figure 10.3 Constant airspeed climb. Stick or throttle?Figure 10.4 Region of reversed command for a power producer.Figure 10.5 Spanwise lift distribution.Figure 10.6 Wing spanwise lift distribution.Figure 10.7 Stall patterns.Figure 10.8 Stall recovery template.Figure 10.9 Power‐off stall and recovery.Figure 10.10 Secondary stall due to improper stall recovery.Figure 10.11 Stall speed chart.Figure 10.12 Spin entry and recovery.Figure 10.13 Stall hitting the horizontal tail.Figure 10.14 Swept wings stall at tips first.Figure 10.15 Aerodynamics of spin for straight‐wing aircraft.Figure 10.16 Aerodynamics of spin for swept‐wing aircraft.Figure 10.17 Wind shear caused by a downdraft.Figure 10.18 “Bursts” caused by a thunderstorm.Figure 10.19 Thunderstorm gust front.Figure 10.20 Temperature inversion LLWS.Figure 10.21 Tailwind wind shear encountered on takeoff: (a) flight path, (b...Figure 10.22 Tailwind shear encountered in landing approach: (a) flight path...Figure 10.23 Wingtip vortices behind an aircraft.Figure 10.24 Helicopter vortices.Figure 10.25 Wake turbulence avoidance.Figure 10.26 Wake turbulence avoidance procedures

      11 Chapter 11Figure 11.1 Overbanking tendency.Figure 11.2 Forces on an aircraft in a coordinated level turn.Figure 11.3 Load factors at various bank angles.Figure 11.4 Forces on an aircraft during a 90° roll.Figure 11.5 Increase in stall speed with load factor.Figure 11.6 Load factor and stall speed.Figure 11.7 First‐stage construction of a V–G diagram.Figure 11.8 Second‐stage construction of V–G diagram.Figure 11.9 Antisymmetrical loading.Figure 11.10 Maneuver speed.Figure 11.11 Ultimate load factors.Figure 11.12 Stall speed and turn radius with varying angle of bank.Figure 11.13 Rate and radius of a turn.Figure 11.14 Constant altitude turn performance.Figure 11.15 Forces on the complete aircraft.Figure 11.16 Thrust‐limited turn radius.Figure 11.17 Perfect and normal loop.Figure 11.18 Centripetal force in a vertical loop.Figure 11.19 Loading on an example aircraft.

      12 Chapter 12Figure 12.1 Types of static stability.Figure 12.2 Dynamic stability.Figure 12.3 Positive static and negative dynamic stability.Figure 12.4 Positive static and neutral dynamic stability.Figure 12.5 Positive static and positive dynamic stability.Figure 12.6 Key weight and balance locations on an aircraft.Figure 12.7 Weight and balance diagram and computational method calculation....Figure 12.8 Effect of load distribution on balance.Figure 12.9 Airplane reference axes.Figure 12.10 Establishing positive moment direction.Figure 12.11 Airplane axes and moment directions.Figure 12.12 Movement of the longitudinal axis in pitch.Figure 12.13 Positive static longitudinal stability.Figure 12.14 Types of static longitudinal stability.Figure 12.15 Degrees of positive static stability.Figure 12.16 Aircraft static longitudinal stability.Figure 12.17 Effect of CG and AC location on static longitudinal stability....Figure 12.18 Static longitudinally stable flying wing in equilibrium.Figure 12.19 Airplane with static longitudinal stability.Figure 12.20 Pressure distribution about a body of revolution.Figure 12.21 Thrust line and longitudinal stability.Figure 12.22 Power changes and longitudinal stability.Figure 12.23 Engine nacelle location contribution to pitch stability.Figure 12.24 Lift of horizontal stabilizer produces a stabilizing moment.Figure 12.25 Effect of speed on tail‐down force.Figure 12.26 Typical buildup of aircraft components.Figure 12.27 Effect of CG location on static longitudinal stability.Figure 12.28 Stick free–stick fixed stability.Figure 12.29 Phugoid longitudinal dynamic mode.Figure 12.30 Short period dynamic mode.Figure 12.31 Forces on a pitching plane.Figure 12.32 Wing wake influences on a low‐tail aircraft.Figure 12.33 Wing wake influences on a sweptwing T‐tail aircraft.Figure 12.34 Change in pressure distribution at stall.Figure 12.35 Sweptwing stall characteristics.Figure 12.36 Forces producing moments during takeoff.

      13 Chapter 13Figure 13.1 (a) Negative yawing moment, (b) positive yawing moment.Figure 13.2 (a) Unstable, (b) stable in yaw.Figure 13.3 Static directional stability.Figure 13.4 Static directional stability at high sideslip angles.Figure 13.5 Effect of wing sweepback on directional stability.Figure 13.6 Directional instability of fuselage.Figure 13.7 Vertical tail is stabilizing in yaw.Figure 13.8 Dorsal fin decreases drag and increases stability.Figure 13.9 Typical buildup of component effects on static directional stabi...Figure 13.10 Rudder‐fixed–rudder‐free yaw stability.Figure 13.11 Loss of directional stability at high AOA.Figure 13.12 Slipstream rotation causes yaw.Figure 13.13 Asymmetrical loading.Figure 13.14 Yawing moment due to asymmetrical thrust.Figure 13.15 Yawing moment due to critical engine.Figure 13.16 Comparison of forward slip to sideslip.Figure 13.17 Propeller drag contribution.Figure 13.18 Effect of rearward CG on yaw.Figure 13.19 Relationship of VMC to VS.Figure 13.20 Rolling moment caused by sideslip.Figure 13.21 (a) Stable, (b) neutral, and (c) unstable static lateral stabil...Figure 13.22 Static lateral stability.Figure 13.23 Dihedral angle.Figure 13.24 Dihedral producing static lateral stability.Figure 13.25 Dihedral effect of sweepback.Figure 13.26 NASA X‐29 aerodynamic features.Figure 13.27 Vertical tail effect on lateral stability.Figure 13.28 Adverse yaw.Figure 13.29 High AOA: (a) upgoing wing: (b) downgoing wing.Figure 13.30 Coupled ailerons and rudder.Figure 13.31 Yaw damper impact on Dutch roll characteristics.Figure 13.32 Flight paths due to coupled dynamic effects: (a) spiral diverge...

      14 Chapter 14Figure 14.1 (a) Subsonic flow, (b) supersonic flow.Figure 14.2 Airflow over a wing section.Figure 14.3 Comparison of supercritical and laminar flow airfoils at Mach 0....Figure 14.4 Effect of wing sweep on a CLα curve.Figure 14.5 Vortex generators.Figure 14.6 High‐speed subsonic flight control surfaces.Figure 14.7 Force divergence effect on CD.Figure 14.8 Force divergence effect on CL.Figure 14.9 Normal shock wave on bottom of wing.Figure 14.10 Aerodynamic center location shift.Figure 14.11 Stick forces versus Mach number.Figure 14.12 Normal shock waves move to trailing edge.Figure 14.13 Unattached bow wave at transonic speed.Figure 14.14 Formation of an oblique shock wave.Figure 14.15 Formation of an expansion wave.Figure 14.16 Summary of supersonic wave characteristics.Figure 14.17 Double‐wedge airfoil in supersonic airflow: (a) wave pattern, (...Figure 14.18 Double‐wedge airfoil developing lift: (a) wave pattern, (b) pre...Figure 14.19 Circular arc airfoil in supersonic flow: (a) wave pattern, (b) ...Figure 14.20 Effect of wing sweep on CD.Figure 14.21 Mach cone.Figure 14.22 Swept wing in supersonic flight.Figure 14.23 The area rule. (a) Cigar shaped fuselage (b) Waisted fuselage....Figure 14.24 Subsonic control surface.Figure 14.25 Supersonic control surface.Figure 14.26 Normal shock engine inlet.Figure 14.27 “Spike” oblique shock engine inlets.Figure 14.28 Stagnation temperatures.Figure 14.29 Effect of temperature on tensile strength of metals after half‐...

      15 Chapter 15Figure 15.1 Momentum theory airflow: (a) schematic, (b) pressure and velocit...Figure 15.2 NACA 0012 airfoil.Figure 15.3 Location of critical forces on an airfoil.Figure 15.4 Centrifugal force straightens rotor blade.Figure 15.5 Lift force and centrifugal force.Figure 15.6 Resultant of lift and centrifugal forces.Figure 15.7 Forces acting on a lifting blade.Figure 15.8 Entire lifting rotor system.Figure 15.9 Hovering helicopter at light weight.Figure 15.10 Hovering helicopter at heavy weight.Figure СКАЧАТЬ