СКАЧАТЬ
переходе на октаву десятичная дробь после запятой остается без изменения и требует лишь прибавления или вычитания единицы. Эти данные при развитии теории музыки неоднократно использовались в дальнейшем. Например, в «Музыкальном словаре» Г. Римана логарифмы Эйлера использованы для математического определения соотношения тонов по высоте. Для описания благозвучия интервалов Эйлер вводит степени благозвучия – gradus suanitatis, о которых говорил еще Кеплер. Эти численные определения благозвучия интервалов и аккордов Эйлер находит по следующему арифметическому правилу (отметим, что такой математический подход вполне обоснован для различных применений, поскольку математические символы при разных физических применениях остаются неизменными). По Эйлеру, для простых натуральных чисел степень благозвучия совпадает со значением такого числа. Все остальные числа рассматриваются как произведения упомянутых «начальных» чисел. Степень благозвучия произведения простых чисел равна сумме этих чисел минус единица. Если находится степень благозвучия аккорда, то находится наименьшее число, которое делилось бы на все наименьшие множители в соотношении чисел колебаний. Например, для четырех степень благозвучия определяется так: 2 + 2 – 1 = 3. Для двенадцати (4:3) степень благозвучия четырех равна 3, откуда получаем степень благозвучия для 12:3 + 3–1 = 5. Для натуральной септимы (4:7) наименьшее число, которое делится на 4 и 7, есть 28 = 47. Но степень благозвучия четырех есть 3, тогда степень благозвучия для септимы будет: 3 + 7 – 1 = 9. Эйлер писал, что найденные таким образом степени благозвучия являются важным элементом в музыке и в других областях искусства. Эйлер, как и Кеплер, изучал не только отдельные консонансы и аккорды, но и их последовательности, занимался построением гамм и модуляций. Одна из систем тонов, выведенная Эйлером, почти полностью Кеплеровы многогранники совпадает с диатонично-хроматической, которую используют в настоящее время музыканты.
Кеплеровы многогранники
Для И. Кеплера сопоставление различных музыкальных пропорций, известных еще древним, не просто предмет исследования, а серьезный метод, инструмент, которым он пользуется для изучения закономерностей движения небесных светил. Для построения и определения орбит планетной системы Кеплер использовал правильные вписанные и описанные многогранники (платоновы фигуры). Применение подобной методики к вибрирующей струне позволило выявить в колебаниях ее частей музыкальные интервалы, а также звучания, которые впоследствии позволили определить тембр звука – обертоны. Найденные Кеплером пропорции между консонирующими интервалами одновременно определяли количественные соотношения между используемыми платоновыми фигурами.
Кеплер показывает структуру планетных орбит на основе построения платоновых вписанных и описанных фигур. Так, если вокруг орбиты Земли, которая является общей мерой всех других орбит, описать додекаэдр, а вокруг додекаэдра – сферу, получим орбиту Марса, соответствующую такой сфере. Если вокруг орбиты Марса,
СКАЧАТЬ