Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун
Чтение книги онлайн.

Читать онлайн книгу Как учится машина. Революция в области нейронных сетей и глубокого обучения - Ян Лекун страница 1

СКАЧАТЬ ящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

      Введение

      «Открой дверь модульного отсека, Хэл!» В фильме «2001 год: Космическая одиссея» HAL 9000, сверхразумный компьютер, управляющий работой космического корабля, отказывается открыть дверь модульного отсека астронавту Дейву Боумену. В этой драматической сцене – вся трагедия искусственного интеллекта. Мыслящая машина оборачивается против человека, который ее сам же разработал. Что это: фантазия или обоснованные опасения? Стоит ли тревожиться о том, что однажды нашим миром будут управлять терминаторы – искусственные гуманоиды с почти неограниченными возможностями и темными замыслами? Этот вопрос люди задают все чаще и чаще сейчас, когда мы переживаем неслыханную революцию в интеллектуальных технологиях, которую никто не мог вообразить себе еще полвека назад. Искусственный интеллект, изучению которого я посвятил много лет, меняет все наше общество.

      Я решил написать эту книгу, чтобы объяснить определенный набор методов и приемов в этой области, не скрывая всей ее сложности. Понять это не так просто, как научиться играть в шашки, но я думаю, что это необходимо для формирования аргументированного мнения по вопросам, связанным с искусственным интеллектом. Наше медиапространство пестрит такими терминами как «глубокое обучение», «машинное обучение» или «нейронные сети» … Я хочу, шаг за шагом, пролить свет на научный подход, который работает на стыке вычислительной техники и нейробиологии, не прибегая при этом к каким-либо метафорам.

      Во время нашего погружения в основы работы вычислительных машин я буду использовать два способа изложения информации. Первый из них – традиционный: я рассказываю, описываю и анализирую. Время от времени для тех, кому интересно, я буду приводить более сложные примеры из математики и компьютерных наук.

      Искусственный интеллект (ИИ) позволяет машине распознавать изображения, транскрибировать голос с одного языка на другой, переводить тексты, автоматизировать управление автомобилем или контролировать производственные процессы. Его широкое распространение в последние годы связано с методом, именуемым глубоким обучением, которое позволяет не просто программировать машину для выполнения определенной задачи, а обучать ее решению более широкого круга сходных задач. Глубокое обучение применяется к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга.

      Наш мозг состоит из 86 миллиардов нейронов, нервных клеток, связанных друг с другом. Искусственные нейронные сети также состоят из множества единиц, математических функций, подобных очень упрощенным нейронам. В мозгу обучение изменяет связи между нейронами; то же самое происходит и с искусственными нейронными сетями. Поскольку эти единицы часто организованы в несколько слоев, мы говорим о «сетях» и «глубоком» обучении.

      Роль искусственных нейронов состоит в том, чтобы вычислить взвешенную сумму входных сигналов и создать выходной сигнал, если эта сумма превышает определенный порог. Но искусственный нейрон – это не больше и не меньше, чем математическая функция, рассчитанная компьютерной программой. Однако мы не случайно применяем к искусственным сетям те же термины, что и к реальным нейронам, – ведь именно открытия в области нейробиологии послужили стимулом исследованиям в области ИИ.

      В этой книге я также хочу проследить свой интеллектуальный путь в рамках этого необычного научного приключения. Мое имя по-прежнему связано с так называемыми «сверточными» нейронными сетями, которые подняли распознавание объектов компьютером на небывалую высоту. Вдохновленные структурой и функцией зрительной коры головного мозга млекопитающих, они могут эффективно обрабатывать изображения, видео, звук, голос, текст и другие типы сигналов.

      В чем состоит деятельность исследователя? Откуда берутся его идеи? Что касается меня, то я уделяю много внимания интуитивным догадкам. Дальше наступает очередь математики. Я знаю, что другие ученые действуют диаметрально противоположным образом. Я проецирую в свою голову пограничные случаи, которые Эйнштейн называл «мысленными экспериментами», благодаря которым вы сначала представляете ситуацию, а затем пытаетесь рассмотреть ее следствия для лучшего понимания проблемы.

      Моя интуиция подпитывается чтением книг. Я просто пожираю книги. Я исследую работы тех, кто был до меня. Вы никогда ничего не создадите в одиночку. Идеи живут, дремлют, и они возникают в чьей-то голове, потому что пришло время. Так рождаются исследования. Они продвигаются неравномерно, то прыжками, то шажками, а порой – даже пятясь. Но деятельность эта всегда коллективна. Образ одинокого исследователя, делающего в своей лаборатории мировое открытия, – не более, чем романтическая фантастика.

      Путь разработки глубокого обучения не был простым. Приходилось бороться со скептиками всех мастей. Сторонники «классического» СКАЧАТЬ