Название: The Smart Cyber Ecosystem for Sustainable Development
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119761662
isbn:
References
1. Gacanin, H. and Ligata, A., Wi-fi self-organizing networks: Challenges and use cases. IEEE Commun. Mag., IEEE, 55, 7, 158–164, 2017.
2. Lohmüller, S., Cognitive Self-Organizing Network Management for Automated Configuration of Self-Optimization SON, in: PhD. Dissertation, University of Augsburg, 2019.
3. Thomas, R., DaSilva, L., MacKenzie, A., Cognitive Networks (book chapter), in: Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, Germany, 2007.
4. Thang, V.V. and Pashchenko, F.F., Multistage System-Based Machine Learning Techniques for Intrusion Detection in WiFi Network. J. Comput. Networks and Commun., vol. 2019, Article ID 4708201, 13 pages, 2019. https://doi.org/10.1155/2019/4708201.
5. Mitchell, T., Machine Learning, McGraw Hill series in computer science, Mc- Graw-Hill, USA, 1997.
6. Liu, Y., Bi, S., Shi, Z., Hanzo, L., When Machine Learning Meets Big: A Wireless Communication Perspective. IEEE Veh. Technol. Mag., IEEE, 15, 63–72, 2020.
7. Kaufman, L. and Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis, JohnWiley & Sons, US, 2018.
8. Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., Zhang, J., What will 5G be? IEEE J. Sel. Areas Commun., 32, 1065–1082, 2014. IEEE.
9. Agarwal, S., Kodialam, M., Lakshman, T., Traffic engineering in software defined networks. Proc. IEEE INFOCOM, pp. 2211–2219, 2013.
10. Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M., Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M., Knowledge defined networking. ACM SIGCOMM Computer Communication Review, vol. 47, pp. 2–10, 2017.
11. Lim, S., Software Defined Network Detection System. Int. J. Recent Technol. Eng. (IJRTE), 8, 1391–1395, 2019.
12. Lin, P., Bi, J., Wolff, S., A west-east bridge based SDN inter-domain testbed. IEEE Commun. Mag., 53, 2, 190–197, 2015.
13. Xie, J., Yu, F., Huang, T., Xie, R., Liu, J., Wangz, C., Liu, Y., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutorials, 21, 393–430, 2019.
14. Elkhodr, M., Hassan, Q., Shahrestani, S., Networks of the Future: Architectures, Technologies, and Implementations, CRC Press Taylor & Francis Group, USA, 2018.
15. Kosmidesa, P., Adamopouloua, E., Demestichasa, K., Anagnostoua, M., Rouskasb, A., On Intelligent Base Station Activation for Next Generation Wireless Networks. The 6th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, Elsevier, 2015.
16. Li, R., Zhao, Z., Chen, X., Zhang, H., Energy saving through a learning framework in greener cellular radio access networks. Proceedings of GLOBECOM, 1556–1561, 2012.
17. Yu, Y., Wang, T., Liew, S., Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks. IEEE International Conference on Communications (ICC), IEEE, 2018.
18. Onireti, O., A Cell Outage Management Framework for Dense Heterogeneous Networks. IEEE Trans. Veh. Technol., 65, 2097–2113, 2016.
19. Mohammadi, M. and Al-Fuqaha, A., Enabling Cognitive Smart Cities Using Big Data and Machine Learning: Approaches and Challenges. IEEE Commun. Mag., 56, 94–101, 2018.
20. He, Y., Software-Defined Networks with Mobile Edge Computing and Caching for Smart Cities: A Big Data Deep Reinforcement Learning Approach. IEEE Commun. Mag., 55, 31–37, 2017.
21. Jia, G., Yang, Z., Lam, H., Shi, J., Shikh-Bahaei, M., Channel assignment in uplink wireless communication using machine learning approach. arXiv preprint arXiv, 2001, 03952, 2020.
22. Zappone, A., Sanguinetti, L., Debbah, M., User association and load balancing for massive MIMO through deep learning. Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 1262–1266, 2018.
23. Lin, P., Large-Scale and High-Dimensional Cell Outage Detection in 5G Self-Organizing Networks. Proceedings of APSIPA Annual Summit and Conference, pp. 8–12, 2019.
24. Pervez, F., Jaber, M., Qadir, J., Younis, S., Imran, M., Fuzzy Q-learning-based user-centric backhaul-aware user cell association scheme. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1840–1845, 2017.
25. Kumar, Y., Farooq, H., Imran, A., Fault Prediction and Reliability Analysis in a Real Cellular Network. 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1090–1095, 2017.
26. Boutaba, R., Salahuddin, M., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O., A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl., Springer, 9, 16, 2018. https://doi.org/10.1186/s13174-018-0087-2.
27 Song, R. and Willink, T., Machine Learning-Based Traffic Classification of Wireless Traffic. International Conference on Military Communications and Information Systems (ICMCIS), 2019.
28. Al-Issax, A., Bentaleb, A., Barakabitzex, A., Zinnery, T., Ghita, B., Bandwidth Prediction Schemes for Defining Bitrate Levels in SDN-enabled Adaptive Streaming. 15th International Conference on Network and Service Management (CNSM), 2019.
29. Fan, Z. and Liu, R., Investigation of machine learning based network traffic classification. Proceedings of ISWCS, pp. 1–6, 2017.
30. Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., Goswami, K., Machine-learning based threat-aware system in software defined networks. Proceedings of IEEE ICCCN, pp. 1–9, 2017.
31. Glick, M. and Rastegarfar, H., Scheduling and control in hybrid data centers. Proceedings IEEE PHOSST’17, pp. 115–116, СКАЧАТЬ