PID Passivity-Based Control of Nonlinear Systems with Applications. Romeo Ortega
Чтение книги онлайн.

Читать онлайн книгу PID Passivity-Based Control of Nonlinear Systems with Applications - Romeo Ortega страница 10

СКАЧАТЬ alt="double-vertical-bar dot double-vertical-bar Subscript 2"/>, respectively.

      Throughout this book, we consider nonlinear systems described by differential equations of the form

      (1)normal upper Sigma colon Start 2 By 3 Matrix 1st Row 1st Column ModifyingAbove x With dot 2nd Column equals 3rd Column f left-parenthesis x right-parenthesis plus g left-parenthesis x right-parenthesis u comma 2nd Row 1st Column y 2nd Column equals 3rd Column h left-parenthesis x right-parenthesis plus j left-parenthesis x right-parenthesis u comma EndMatrix

      where x left-parenthesis t right-parenthesis element-of double-struck upper R Superscript n is the state vector, u left-parenthesis t right-parenthesis element-of double-struck upper R Superscript m, m less-than-or-equal-to n, is the control vector, y left-parenthesis t right-parenthesis element-of double-struck upper R Superscript m is an output of the system defined via the mappings h colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript m and j colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript m times m, f colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript n and g colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript n times m is the input matrix, which is full rank. In the sequel, we will refer to this system as normal upper Sigma or left-parenthesis f comma g comma h comma j right-parenthesis system.

      We also consider the case of port‐Hamiltonian systems when the vector field f left-parenthesis x right-parenthesis may be factorized as

      (2)f left-parenthesis x right-parenthesis equals left-bracket script upper J left-parenthesis x right-parenthesis minus script upper R left-parenthesis x right-parenthesis right-bracket nabla upper H left-parenthesis x right-parenthesis comma

      where upper H colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R is the Hamiltonian, script upper J colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript n times n and script upper R colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript n times n, with script upper J left-parenthesis x right-parenthesis equals minus script upper J Superscript down-tack Baseline left-parenthesis x right-parenthesis and script upper R left-parenthesis x right-parenthesis equals script upper R Superscript down-tack Baseline left-parenthesis x right-parenthesis greater-than-or-equal-to 0, are the interconnection and damping matrices, respectively. To simplify the notation in the sequel, we define the matrix upper F colon double-struck upper R Superscript n Baseline right-arrow double-struck upper R Superscript n times n,

upper F left-parenthesis x right-parenthesis colon equals script upper J left-parenthesis x right-parenthesis minus script upper R left-parenthesis x right-parenthesis period

      In this book we show that, for a wide class of systems, these two difficulties can be overcome by exploiting the property of passivity, which in the case of physical systems captures the universal feature of energy conservation. To achieve this end, we propose a new class of controllers called PID passivity‐based controls (PBCs), whose main construction principle is to wrap the PID around a passive output of the plant. Since PIDs define (output strictly) passive systems for all positive gains, and the feedback interconnection of passive systems is stable, СКАЧАТЬ