PID Passivity-Based Control of Nonlinear Systems with Applications. Romeo Ortega
Чтение книги онлайн.

Читать онлайн книгу PID Passivity-Based Control of Nonlinear Systems with Applications - Romeo Ortega страница 16

СКАЧАТЬ minus upper K Subscript upper P Baseline y 0 minus upper K Subscript upper I Baseline left-bracket gamma left-parenthesis x right-parenthesis minus gamma left-parenthesis x Superscript star Baseline right-parenthesis right-bracket comma"/>

      which exactly coincides with the control generated with the PI‐PBC evaluated at script upper M Subscript kappa Superscript star. Such an implementation does not impose any constraint on x Subscript c Baseline left-parenthesis 0 right-parenthesis and is therefore robust.

      The details of this construction are given in Chapter 6, where we also prove that the set of solutions of the partial differential equations (PDEs) that must be solved to generate the invariant foliation script upper M Subscript kappa in CbI is strictly smaller than the ones needed in the PID‐PBC, yielding a design procedure that is applicable for a broader class of systems.

      1 K. H. Ang, G. Chong, and Y. Li. PID control system analysis, design and technology. IEEE Transactions on Control Systems Technology, 13(4): 559–576, 2005.

      2 K. J. Åstrom. Advances in PID control. In XXXIX Jornadas de Automatica, Badajoz, Spain, 2018.

      3 K. J. Åstrom and T. Hägglund. PID Controllers: Theory, Design, and Tuning. 2nd edition. Instrument Society of America, 1995.

      4 K. J. Åstrom and T. Hägglund. The future of PID control. Control Engineering Practice, 9(11): 1163–1175, 2001.

      5 F. Castaños, R. Ortega, A. J. van der Schaft, and A. Astolfi. Asymptotic stabilization via control by interconnection of port‐Hamiltonian systems. Automatica, 45(7): 1611–1618, 2009.

      6 V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx. Modeling and Control of Complex Physical Systems: The Port‐Hamiltonian Approach. Springer Science & Business Media, 2009.

      7 R. Ortega and E. García‐Canseco. Interconnection and damping assignment passivity‐based control: a survey. European Journal of Control, 10(5): 432–450, 2004.

      8 R. Ortega, A. J. van der Schaft, F. Castaños, and A. Astolfi. Control by interconnection and standard passivity–based control of port–Hamiltonian systems. IEEE Transactions on Automatic Control, 53(11): 2527–2542, 2008.

      9 R. Ortega. Comments on recent claims about trajectories of control systems valid for particular initial conditions. Asian Journal of Control, 1–8, 2021.

      10 M. Spivak. Calculus on Manifolds. Addison‐Wesley, 1995.

      11 A. J. van der Schaft. ‐Gain and Passivity Techniques in Nonlinear Control. Springer‐Verlag, Berlin, 3rd edition, 2016.

      12 A. Venkatraman and A. J. van der Schaft. Energy shaping of port‐Hamiltonian systems by using alternate passive input‐output pairs. European Journal of Control, 16(6): 665–677, 2010.

      13 M. Zhang, R. Ortega, D. Jeltsema, and H. Su. Further deleterious effects of the dissipation obstacle in control‐by‐interconnection of port‐Hamiltonian systems. Automatica, 61(11): 227–2331, 2015.

      1 1 Essentially, it is necessary to ensure that the control law 2.1 can be computed without differentiation nor singularities. We will elaborate on this issue in Section 2.2.

      2 2 We recall that a necessary condition for passivity of the system is that the relative degree is smaller or equal to one (van der Schaft, 2016).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R4gUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAS8AAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAACYATQBpAGMAcgBvAHMA bwBmAHQAIABQAHIAaQBuAHQAIAB0AG8AIABQAEQARgAgACgAcgBlAGQAaQByAGUAYwB0AGUAZAAg ADEAKQAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAAcgBvAG8AZgAgAFMAZQB0AHUAcAAA AAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNN WUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENw dG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9v bAAAAAAATGJsc2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAA AEJja2dPYmpjAAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3JuIGRv dWJAb+AAAAAAAAAAAABCbCAgZG91YkBv4AAAAAAAAAAAAEJyZFRVbnRGI1JsdAAAAAAAAAAAAAAA AEJsZCBVbnRGI1JsdAAAAAAAAAAAAAAAAFJzbHRVbnRGI1B4bEBywAAAAAAAAAAACnZlY3RvckRh dGFib29sAQAAAABQZ1BzZW51bQAAAABQZ1BzAAAAAFBnUEMAAAAATGVmdFVudEYjUmx0AAAAAAAA AAAAAAAAVG9wIFVudEYjUmx0AAAAAAAAAAAAAAAAU2NsIFVudEYjUHJjQFkAAAAAAAAAAAAQY3Jv cFdoZW5QcmludGluZ2
СКАЧАТЬ