Котлы тепловых электростанций и защита атмосферы. Сергей Беликов
Чтение книги онлайн.

Читать онлайн книгу Котлы тепловых электростанций и защита атмосферы - Сергей Беликов страница 15

СКАЧАТЬ билами значительно уменьшает долю грубых фракций с размером более 1000 мкм.

      3.1.4. Пылеконцентраторы

      В последние десятилетия при использовании высоковлажных и низкокалорийных твердых топлив на тракте между мельницей и горелкой стали устанавливать пылеконцентраторы (рис. 3.15). Необходимость их установки объясняется следующим образом.

      Рис. 3.15. Схема пылеконцентратора: 1 – корпус; 2 – завихритель; 3 – рассекатель; 4 – основной отвод; 5 – сбросной отвод

      При сжигании, например, болгарского лигнита с Qir = 5,46 МДж/кг и Wr = 56 % теоретическая (адиабатическая) температура горения составляет всего 1373 К (1100 °С). Столь низкое значение ϑa объясняется не только большой влажностью, но и сушкой топлива газами рециркуляции для получения достаточно подсушенной пыли. Подача в ядро горения вместе с топливом большого количества инертных газов приводит к дополнительному снижению теоретической температуры горения топлива. Расчеты показывают, что, например, для получения достаточно сухой пыли (Wpf <20 %) при размоле болгарских бурых углей доля газа, идущего на сушку, а затем вдуваемого вместе с пылью в ядро факела в виде сравнительно холодного агента (140–200 °С), составляет 40–60 % всех топочных газов. Кроме того, наличие в первичной аэросмеси такого большого количества инертного продукта и водяного пара уменьшает концентрацию кислорода, что также затрудняет нормальное развитие топочного процесса.

      Для надежного сжигания высоковлажных углей типа болгарского бурого, путем повышения температуры и концентрации кислорода в ядре факела при сохранении всех преимуществ системы с прямым вдуванием, был использован пылеконцентратор, позволяющий отделить часть слабозапыленного влажного сушильного агента и сбросить его в верхнюю часть топки.

      Принцип действия пылеконцентратора заключается в разделении исходной пылегазовой смеси на сильно– и слабозапыленные потоки за счет различных гидродинамических свойств твердой и газовой фазы. В центробежном пылеконцентраторе, схема которого приведена на рис. 3.15, поток аэросмеси проходит через лопаточный завихритель и приобретает вращательное движение. За счет действия центробежной силы пылевые частицы отжимаются к внутренней поверхности корпуса, увеличивая концентрацию несущего газового потока. Рабочий процесс в пылеконцентраторе заканчивается выделением в самостоятельные отводы части несущего газового потока, имеющего большую, по сравнению с исходным потоком, концентрацию пыли и другой части с соответственно меньшей, чем у исходного, концентрацией пыли.

      Основными режимными параметрами пылеконцентратора являются gc и l, где gc – это доля пыли, поступающей в основной отвод, то есть

      gc = Gосн /Gо, (3.2)

      а l – доля газа (несущего агента), также поступающего в основной отвод:

      l = Qосн/Q0. (3.3)

      Слабозапыленный поток, включающий в себя остаток пыли Gсбр = G0−Gосн, выносится газовым агентом Qсбр = Qо−Qосн СКАЧАТЬ