Название: Mysteries and Secrets of Numerology
Автор: Patricia Fanthorpe
Издательство: Ingram
Жанр: Эзотерика
Серия: Mysteries and Secrets
isbn: 9781459705395
isbn:
Daisy petals
In addition to the Fibonacci numbers of growing points on plants, such as the sneezewort, the series occurs again when petals are counted.
Daisies can have as many as 89 petals, although 55 and 34 are more usual totals. All 3 of these totals are Fibonacci numbers. Buttercups are members of the ranunculaceae family — an interesting name that comes from the Latin for “little frog,” which has about 1,700 species worldwide. Buttercups produce 5 petals, “5” being a member of the Fibonacci series, and so do pinks, larkspurs, columbines, and wild roses. This fundamental link between plants and the Fibonacci numbers continues powerfully with many additional examples. The iris and the lily have 3 petals. Delphiniums have 8. Asters have 21 and corn marigolds have 13, as do cineraria. When the Lucas numbers are accepted as a parallel series, very similar in principle to the Fibonacci numbers, the fuchsia can be included with its 4 petals because 4 fits the Lucas series: 2,1,3,4,7,11.… Asters and chicory have 21 petals; plantains and pyrethrum have 34. Rose petal formations also comply with the Fibonacci numbers.
The technical botanical term phyllotaxis, also rendered as phyllotaxy, refers to the way that leaves are arranged on the stem of a plant. The word was coined in 1754 by a Swiss naturalist named Charles Bonnet (1720–1793). He derived it from 2 ancient Greek terms: phyllon, meaning a leaf, and taxis, meaning the way that things are arranged, set out, and displayed. A few years later, other naturalists discovered that each new leaf on a plant is set at a particular angle (137.5 degrees) from the one that preceded it. This is called the “angle of divergence.” It can also be described as the fraction of a circle differentiating a new leaf from its immediate predecessor. When the 137.5-degree angle is calculated, it turns out to be in the ratio of 1÷ф, and this leads straight back to our Fibonacci series and the golden mean: 1.618033 and its reciprocal 0.618033.
The spirals in a pinecone are designed according to Fibonacci numbers, and sunflowers are especially geared to the series. Some have 34 spirals, some have 55, and others have as many as 89.
Other Fibonacci phenomena can be seen when studying broccoli and cauliflowers. When the spirals are counted on a ripe cauliflower, the Fibonacci number “5” can be detected. There are 13 spirals (another Fibonacci number) on Romanesque broccoli. A slice through a banana reveals 3 sections; a slice through an apple shows 5. The Fibonacci numbers are there again.
The echinocactus grusonii cactus fits in well with the Lucas series and displays 29 ribs to the world. Best known by its popular name of the “golden ball,” or “golden barrel,” it grows in central Mexico.
These Lucas- and Fibonacci-based numbers in living things, however, are not confined to plant life such as cacti, cauliflowers, and broccoli — far from it. Other examples are found in natural spirals, such as those of snails.
Fibonacci and snail's shell
Theoretically, there is no limit to the size of this spiral. It could fill anything from a galaxy to a garden trowel. Each new square will have a side that is the same length as the 2 previous sides added to each other — the construction technique for the Fibonacci series. If we now consider the importance of ф and apply it to the spiral constructed from the Fibonacci-sided squares, it becomes clear that every quarter-turn of the spiral has rotated in such a way that each line drawn from the spiral to its centre will be approximately 1.618 times longer than its predecessor. The humble little garden snail is not alone in possessing a Fibonacci-based spiral shell: a great many other shells exhibit it both on land and sea. There has been some controversy between naturalists, mathematicians, and numerologists over the exactness of this coordination between spiral shell measurements and the Fibonacci series. Nautilus seashells seem to vary between about 1.9 and 1.6, nevertheless they seem to come close enough to ф to be worth serious consideration. But how powerfully, and how consistently, does nature conform to the Fibonacci series and the mysterious golden mean? And what does that conformity imply about mathematical structures and its mysterious first cousin, numerology?
The cochlea of the human ear also forms a Fibonacci spiral. From the complexity of these spirals to the simple but equally impressive zoological example that can be found in the human arm, the whole question becomes closer and more familiar. Begin by considering the humerus bone: just one single bone from shoulder to elbow. At the elbow, 2 bones begin: the ulna and the radius. The hand has 5 digits, and each digit possesses 3 small bones. The arm clearly illustrates the Fibonacci series: “1,” “2,” “5,” and “3” are all Fibonacci numbers. The golden mean can also be demonstrated by measuring the hand, from the wrist to the fingertips, and comparing it to the length of the forearm from the elbow to the wrist. The ratio of the forearm to the whole distance from elbow to fingertips (which is the same as the ancient cubit, the unit used to give the dimensions of Noah’s ark in the flood story) is the same as the ratio of the forearm (elbow to wrist) to the hand (wrist to fingertips).
Dolphins also comply with the Fibonacci numbers. If lines are measured from the eyes, fins, and tail, they all combine to make the golden section. Strange to think that a dolphin has the same beautiful proportions as classical Greek architecture. The simple starfish with its 5 “arms” provides yet another instance — “5” being a significant Fibonacci number.
The beautiful and intricate body shape of the marine angel fish also complies with the golden section: members of the pomacanthidae family, they live on shallow reefs in the Indian Ocean, the tropical Atlantic, and the western Pacific.
Going down into the depths of life’s mysteries, inside the nucleus of the living cell, is DNA. The nucleus of a living cell contains “X”-shaped chromosomes and each of them can contain thousands of genes. Each gene is the blueprint of an inherited characteristic. The mysterious DNA (deoxyribonucleic acid) is a weird double-helix shape, and, when measured, it turns out to be in the ratio of 21:13 angstroms, which boils down to ф. Therefore, Fibonacci’s awesome numbering system is even found in the depths of genetics and DNA, which can be thought of as one of life’s foundation stones.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.