Introduction to Ore-Forming Processes. Laurence Robb
Чтение книги онлайн.

Читать онлайн книгу Introduction to Ore-Forming Processes - Laurence Robb страница 13

Название: Introduction to Ore-Forming Processes

Автор: Laurence Robb

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119232384

isbn:

СКАЧАТЬ Africa. (d) Sedimentary: Au- and U-bearing conglomerate from the Witwatersrand Basin, South Africa. (e) Hydrothermal: quartz-carbonate vein network in metasedimentary host rocks of the Lily gold mine, Barberton greenstone belt, South Africa. "/>

      The main part of this book is subdivided into three sections termed Igneous (Part I), Hydrothermal (Part II), and Sedimentary/Surficial (Part III) (Figure 1a–e). Part I comprises Chapters 1 and 2, which deal with igneous and magmatic‐hydrothermal ore‐forming processes respectively. Part II contains Chapter 3 and covers the large and diverse range of hydrothermal processes not covered in Part I. Part III comprises Chapter 4 on surficial and supergene processes, as well as Chapter 5, which covers sedimentary ore deposits, including a section on the fossil fuels. The final chapter of the book, Chapter 6, is effectively an addendum to this threefold subdivision and is an attempt to describe the distribution of ore deposits, both spatially in the context of global tectonics and temporally in terms of crustal evolution, through Earth history. This chapter is relevant because the plate tectonic paradigm, which has so pervasively influenced geological thought since the early 1970s, provides another conceptual basis within which to classify ore deposits. In fact, modern economic geology, and the scientific exploration of mineral deposits, is now firmly cast into the frame of global tectonics and crustal evolution. Although there is still a great deal to be learnt, the links between plate tectonics and ore genesis are now sufficiently well established that studies of ore deposits are starting to contribute to a better understanding of the Earth system.

      Source: Average crustal abundances from Rudnick and Gao (2014). Reproduced with permission of Elsevier.

Average crustal abundance Typical exploitable grade Approximate concentration factor
Al 8.4% 30% ×4
Fe 5.2% 50% ×9
Cu 27 ppm 1% ×370
Ni 59 ppm 1% ×170
Zn 72 ppm 5% ×700
Sn 1.7 ppm 0.5% ×2900
Au 1.3 ppb 2 g t−1 ×1500
Pt 1.5 ppb 5 g t−1 ×3300

      Note: 1 ppm is the same as 1 g t−1.

      By contrast, base metals such as Cu, Zn, and Ni are much more sparsely distributed and average crustal abundances are only in the range 30–70 parts per million (ppm). The economics of mining dictate that these metals need to be concentrated by factors in the hundreds in order to form potentially viable deposits – degrees of enrichment that are an order of magnitude higher than those applicable to the more abundant metals. The degree of concentration required for the precious metals is even more demanding, where the required enrichment factors are in the thousands. Table 1 shows that average crustal abundances for Au and Pt are in the range 1–2 parts per billion (ppb) and even though mines routinely extract these metals at grades of around 1–5 g t−1, the enrichment factors involved are between 1000 and 3000 times.

Graph depicts the plot of global production against crustal abundances for a number of metal commodities. The line through Fe can be regarded as a datum against which the rates of production of the other metals can be compared in the context of crustal abundances.