Applied Concepts in Fractured Reservoirs. John C. Lorenz
Чтение книги онлайн.

Читать онлайн книгу Applied Concepts in Fractured Reservoirs - John C. Lorenz страница 7

Название: Applied Concepts in Fractured Reservoirs

Автор: John C. Lorenz

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119055983

isbn:

СКАЧАТЬ engineering.

      The book is balanced in that it introduces the reader to basic definitions and classifications of fractures and fractured reservoirs at the outset. It then proceeds by outlining a workflow for fractured reservoirs characterization and it goes on to introduce the way fractures impact operational activities. The book allocates a considerable section to discussing the impact of natural fractures on hydraulic fracturing. In my opinion such impact is not fully understood and including it in the book is a timely approach to raise questions, stimulate thoughts, and shed some light on different experimental explanations. The ability to predict the outcome when natural fractures interact with hydraulically stimulated/induced fractures in a reservoir is a challenge not yet fully achieved. Advancement in this area of hydrofracturing is a crucial step in making hydrofracturing more efficient and safer.

      John Lorenz and Scott Cooper, who are accomplished researchers and consultants, have produced a valuable resource on the subject of fractured reservoirs, a publication which complements previous texts, and takes the topic to a broader, up‐to‐date, applied level and scope.

       Mohammed S. Ameen (Ph.D., DIC, FGS) Principal Professional in Geomechanics, Emerging Unconventional Assets Department, Saudi Aramco, Dhahran, Saudi Arabia

      This book is a companion to our previous Atlas of Natural and Induced Fractures in Core, moving on from the basic recognition of fracture types described in that volume, which must be the foundation of any fracture study, to explanations of how those fractures form, how they are measured, how they can be assessed, and how they affect reservoirs.

      This volume is the summary of decades of experience with industry doing applied fracture studies. It brings together numerous fracture‐related topics that are not collected elsewhere. We hope that it will be useful to both academia and industry, and that it is not in the vein of the apocryphal third‐grader doing a book report on penguins, who concluded that “This book tells me more than I want to know about penguins.”

      Numerous people have contributed to this effort, providing reviews, materials, references, photographs, and insights. We would specifically like to acknowledge and thank Mohammed Ameen, Bruce Hart, Connie Hawkins, Nate Gilbertson, Ron Nelson, Ahmed Ouenes, David Schechter, Joe Simonson, and Norm Warpinski.

      Much of the original material used to illustrate this volume has come from detailed, unpublished industry studies, and we thank those companies for allowing us to use the material, sanitized for publication. We would also like to acknowledge all of the astute people who over the years have worked in this amazing field of study and whose published papers were used throughout this text.

      We would also like to thank our wives, who, knowing better than we did the size of the undertaking, said “Sure, why not?” when asked if we might carve the needed time from family commitments.

      One can't begin to write a textbook without self‐indulgently explaining how important the subject matter is and how readers therefore absolutely need to know the material. Fortunately, the importance of understanding the origins, characteristics, and effects of natural fractures in hydrocarbon reservoirs is becoming widely accepted, so it is enough for us to note that technology has continued to extend a recognition of the presence and importance of natural fractures in many reservoirs once thought to be un‐fractured. Moreover, the increasing use of horizontal and deviated wellbores is providing unique and invaluable information on the close fracture spacings exhibited by many fracture systems, even in relatively undeformed strata.

      It was not always so. The default conceptual model of a reservoir before image logs and extensive coring, even in deformed strata, rarely included natural fractures, and there were few data points to indicate otherwise. Cored fractures used to be relatively rare because of the wide fracture spacings typical of the thicker reservoir units most commonly cored, and because vertical core has a low probability of capturing vertical fractures, the most common type in many reservoirs. For example, a vertical, 4‐inch (10 cm) diameter core cut vertically through a fractured bed where fracture spacing averages 40 inches (about 1 m) has only a 10% probability of sampling the fracture population (see Lorenz, 1992). The absence of vertical fractures in vertical core used to be accepted as proof that a reservoir was not fractured, but that is like saying that there are no mosquitos about on a summer's evening picnic because you have not been bitten yet.

      This absence of good subsurface data, and the slowly maturing study of geomechanics prior to the 1980s, did not support the presence of fractures in the subsurface below about 2000 ft. Statements such as “At depth… most joints are generally closed…” (Heck, 1955) were widely accepted, and even the experts at the respected rock mechanics laboratory of the Exploration and Production Research Division of the Shell Development Company would write that “It is, of course, inconceivable that an open crack could exist at depth…” (Griggs and Handin, 1960). Thus, those fractures that were cored were usually considered to be exceptions rather than, as they are, evidence for abundant fracturing.

      Substantive, definitive data now document the common presence of natural fractures with significant, permeability‐enhancing apertures at the depths of hydrocarbon reservoirs. Moreover, improved understandings of geomechanics and the dynamics of reservoirs (e.g., Ameen, 2018) have allowed for predictions of the behavior of fracture‐permeability systems during production. Thus, the effects of natural fractures must be included in assessments of most reservoir permeability systems, especially in unconventional reservoirs.

      The default conceptual natural fracture in early reservoir models was a regularly spaced, randomly oriented, open slot of uniform width. The reality is that the fractures of a typical fracture set in a hydrocarbon reservoir are log‐normally spaced, systematically oriented, and have irregular apertures. Although a significant variety of fracture types exist in hydrocarbon reservoirs (see Lorenz and Cooper, 2018a), their effects on permeability can be reasonably assessed if the fracture type, degree of occlusion, degree of development, and tectonic setting can be characterized.

      For example; shear fractures commonly occur as related, intersecting conjugate pairs whereas extension fractures occur as poorly‐connected parallel planes. Shear fractures form vertically and laterally interconnected drainage networks but the individual shear‐fracture apertures and therefore permeabilities are irregular. In contrast, sets of extension fractures create highly anisotropic drainage in a reservoir, and are likely to be vertically limited by lithologic discontinuities. Thus, it is important to not only recognize the presence of fractures in a reservoir but also to both correctly identify the fractures by type and to fully characterize them. Fractures in a reservoir must be understood, they cannot be merely counted and oriented.

      This volume is a companion volume to our earlier Atlas of Natural and Induced Fractures in Core (Lorenz and Cooper, 2018a). That volume provides a tool for accurately СКАЧАТЬ