How to Be an Epicurean. Catherine Wilson
Чтение книги онлайн.

Читать онлайн книгу How to Be an Epicurean - Catherine Wilson страница 11

Название: How to Be an Epicurean

Автор: Catherine Wilson

Издательство: HarperCollins

Жанр: Философия

Серия:

isbn: 9780008291716

isbn:

СКАЧАТЬ and mind are entirely interwoven, the body cannot live on and experience sensation without its mind, and the mind divorced from the body cannot produce any thought or movement. At the moment of death, the soul particles escape into the surrounding atmosphere without causing any immediate change in the weight or shape of the body. ‘It is like the case of a wine whose bouquet has evaporated, or of a perfume whose exquisite scent has dispersed into the air, or of some object whose flavour has departed.’ The death of the body most certainly means the permanent annihilation of that body’s mind.

      Descartes’s official theory of the special human soul put him in good and extensive company. The majority of the human race believed in his time, and the majority still believes, that the soul is a something that lives in the body. The soul is thought of as a permanent, indestructible entity that can survive the death of the body. Not only can it survive, it can reattach itself to a new living body – either the resurrected body of the person who died, or one of their descendants, or an animal of another species – where it will continue to see, feel and think to the extent permitted by that body. The Epicurean of today will, however, insist that the soul is not able to detach itself from its original body or attach itself to another unensouled human body. My death, she supposes, will be the end of all my experience and thinking, and it will not be the start of some other being’s experience and thinking, except in the sense that some of the particles composing me may eventually find their way into another organism.

      It is currently thought that consciousness may be widely distributed in nature. There is little doubt that mammals and birds have experiences and feel emotions, and the sensation of pain must have appeared very early in evolutionary history. As difficult as it is to imagine the experiences of a gecko or a spider, many animals, including fish, reptiles, cephalopods like octopi and squid, and even insects, have a good claim to awareness of a sensory world of flavours, odours, sounds and visible, tangible objects and substances.

      Still, it might seem incredible that consciousness and all our mental powers, including rational decision-making and creativity as well as perception and feeling, could arise from purely physical underpinnings, from processes in our brains that work according to the laws of physics and chemistry. The alphabet analogy goes some way towards explaining how individual elements – letters – can give rise to composites – words and sentences – with new qualities. But we may still wonder how, from the ultimately real colourless, odourless, tasteless, silent particles and forces, consciousness can present to us a world of flavour, colour, scent and sound.

      A more tractable question than ‘How does conscious awareness arise?’ is the question of why conscious awareness is useful. Developing lungs or wings enabled prehistoric animals to exploit particular features of their environment: to move from the sea onto the land where there were new things to eat, or from land into the air, where many predators could be avoided. But what does having awareness, consciousness of a world and, with it, knowledge of how my body is related to other bodies enable me to accomplish what I couldn’t accomplish if I were a well-programmed unconscious machine? With robotics constantly improving and developing remarkable recognition and navigation skills, this question is highly actual.

      To see why, despite technological advances, consciousness might be necessary for many living things, consider the simple robot known as the Roomba. The Roomba is a disk, about 16 inches in diameter, with two independently operating wheels, that gets plugged into the wall to charge. It then runs around your floor sweeping up crumbs and dust. According to its literature, it is able to ‘change direction upon encountering obstacles, to detect dirty spots on the floor and to sense steep drops to keep it from falling down stairs’.

      Now imagine we want to build a robot that forages for food outdoors on variable terrain, rather than for dust and dirt on flat indoor surfaces, and that it will convert this food into the fuel that powers its movements. It now faces certain dangers, not only from sharp rocks and precipices in its environment, but also from heat, cold and rain that will destroy its electronic components. It must avoid consuming non-food substances. It must be efficient in expending its energy if it is to survive, because the amount of food it can find, consume and metabolise for power is limited. This robot is mortal. It can just wear out, like the Roomba, through friction and corrosion. But it can also ‘die’ if its energy needs exceed the amount of food it is able to find, consume and convert to power, or if it fails to detect a lethal danger. It may also be attacked and killed by another robot that can consume its body for fuel or replacement components, or by an irritated human being.