Название: Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
Автор: Марк Боуэн
Издательство: Издательство АСТ
Жанр: Прочая образовательная литература
Серия: Наука: открытия и первооткрыватели
isbn: 978-5-17-110837-3
isbn:
Если каждый мюон, представляющий собой лептон, распадается на три лептона, одним из которых являлся электрон, то сохранение лептонов предполагает, что две другие частицы должны отменить взаимное влияние друг друга: они должны представлять собой лептон и антилептон – иными словами, нейтрино и антинейтрино. Однако когда частица и ее античастица оказываются в тесной близости друг к другу, они обычно аннигилируют и дают жизнь новым частицам. Поскольку Понтекорво и Хинкс обнаружили, что два незаряженных продукта распада мюона не аннигилируют, то Понтекорво пришел к выводу о том, что у них должно иметься некое пока не известное качество, и оно должно быть каким-то образом связано с различием между мюоном и электроном.
Давайте продолжим этот ход размышлений: для сохранения «мюонности», известной в наши дни под названием «аромата» мюона, новое нейтрино должно быть мюонным, а для сохранения аромата электрона, равного до распада нулю, антинейтрино, созданное в связке с новым электроном, должно быть электронным. И теперь мы можем сказать, что именно это предвидел Вольфганг Паули еще в 1930 году: поскольку электрон создается в изначальной форме бета-распада, соответствующее ему нейтрино должно быть электронным антинейтрино.
Мюон распадается на три частицы. До распада имеется один лептон с ароматом мюона и отрицательным электрическим зарядом. После распада электрон несет электрический заряд, мюонное нейтрино – аромат мюона, а электронное антинейтрино компенсирует аромат электрона и количество лептонов. Таким образом, сохраняются число лептонов, аромат лептонов и электрический заряд.
А теперь вернемся обратно на землю (или, скажем точнее, на антарктический лед). Судя по всему, аромат имеет важное значение для нейтринной астрономии. Мюонное нейтрино может инициировать бета-распад точно так же, как и его электронный родственник, с одним важным отличием, позволяющим родиться именно мюону, а не электрону. Представляется, что выявить мюон проще, поскольку он проникает сквозь лед легче, чем электрон. Выявление мюона было основным принципом работы Антарктического массива мюонно-нейтринных детекторов (проект AMANDA) и до сих пор остается хлебом насущным для IceCube. Мюон – это рабочая лошадка нейтринной астрономии.
В СКАЧАТЬ