Big Bang. Simon Singh
Чтение книги онлайн.

Читать онлайн книгу Big Bang - Simon Singh страница 8

Название: Big Bang

Автор: Simon Singh

Издательство: HarperCollins

Жанр: Прочая образовательная литература

Серия:

isbn: 9780007375509

isbn:

СКАЧАТЬ edict of circular perfection. The solution became associated with the name of one astronomer, Ptolemy, who lived in Alexandria in the second century AD.

      Figure 8 Planets such as Mars, Jupiter and Saturn exhibit so-called retrograde motion when viewed from Earth. Diagram (a) shows a stripped-down Solar System with just the Earth and Mars orbiting (anticlockwise) around the Sun. From position 1, we would see Mars move increasingly ahead of us, which continues as we observe Mars from position 2. But Mars pauses at position 3, and by position 4 is now moving to the right, and even further to the right when Earth arrives at position 5. There it pauses once more, before resuming its original direction of travel, as seen from positions 6 and 7. Of course, Mars is continually moving anticlockwise around the Sun, but it appears to us that Mars is zigzagging because of the relative motions of the Earth and Mars. Retrograde motion makes perfect sense in a Sun-centred model of the universe.

      Diagram (b) shows how believers in an Earth-centred model perceived the orbit of Mars. The zigzag of Mars was interpreted as an actual looping orbit. In other words, traditionalists believed that the static Earth sat at the centre of the universe, while Mars looped its way around the Earth.

      Ptolemy’s world-view started with the widely held assumption that the Earth is at the centre of the universe and stationary, otherwise ‘all the animals and all the separate weights would be left behind floating on the air’. Next, he explained the orbits of the Sun and Moon in terms of simple circles. Then, in order to explain retrograde motions, he developed a theory of circles within circles, as illustrated in Figure 9. To generate a path with periodic retrograde motion, such as the one followed by Mars, Ptolemy proposed starting with a single circle (known as the deferent), with a rod attached to the circle so that it pivoted. The planet then occupied a position at the end of this pivoted rod. If the main deferent circle remained fixed and the rod rotated around its pivot, then the planet would follow a circular path with a short radius (known as the epicycle), as shown in Figure 9(a). Alternatively, if the main deferent circle rotated and the rod remained fixed, then the planet would follow a circular path with a larger radius, as shown in Figure 9(b). However, if the rod rotated around its pivot and at the same time the pivot rotated with the main deferent circle, then the planet’s path would be a composite of its motion around the two circles, which mimics a retrograde loop, as shown in Figure 9(c).

      Although this description of circles and pivots conveys the central idea of Ptolemy’s model, it was actually far more complicated. To start with, Ptolemy thought of his model in three dimensions and constructed it from crystal spheres, but for simplicity we will continue to think in terms of two-dimensional circles. Also, in order to accurately explain the retrogrades of different planets, Ptolemy had to carefully tune the radius of the deferent and the radius of the epicycle for each planet, and select the speed at which each rotated. For even greater accuracy he introduced two other variable elements. The eccentric defined a point to the side of the Earth which acted as a slightly displaced centre for the deferent circle, while the equant defined another point close to the Earth, whose influence contributed to the variable speed of the planet. It is hard to imagine this increasingly complicated explanation for planetary orbits, but essentially it consisted of nothing more than circles on top of more circles within yet more circles.

      Figure 9 The Ptolemaic model of the universe explained the loopy orbits of planets such as Mars using combinations of circles. Diagram (a) shows the main circle, called the deferent, and a pivoted rod with a planet on the end. If the deferent does not rotate, but the rod does rotate, then the planet follows the smaller, bold circle mapped out by the end of the rod, which is called an epicycle.

      Diagram (b) shows what happens if the pivoted rod remains fixed and the deferent is allowed to rotate. The planet follows a circle with a large radius.

      Diagram (c) shows what happens when both the rod rotates around its pivot, and the pivot rotates with the deferent. This time the epicycle is superimposed on the deferent, and the planet’s orbit is the combination of two circular paths, which results in the loopy retrograde orbit associated with a planet such as Mars. The radii of the deferent and epicycle can be adjusted and both speeds of rotation can be tuned to mimic the path of any planet.

      The best analogy for Ptolemy’s model of the universe is to be found in a fairground. The Moon follows a simple path, a bit like a horse on a rather tame merry-go-round for young children. But the path of Mars is more like a wild waltzer ride, which locks the rider in a cradle that pivots at the end of a long rotating arm. The rider follows a circular path while spinning in the cradle, but at the same time he is following another, much larger, circular path at the end of the long arm that holds the cradle. Sometimes the two motions combine, giving rise to an even greater forward speed, while sometimes the cradle is moving backwards relative to the arm and the speed is slowed or even reversed. In Ptolemaic terminology, the cradle spins around an epicycle and the long arm traces out the deferent.

      The Ptolemaic Earth-centred model of the universe was constructed to comply with the beliefs that everything revolves around the Earth and that all celestial objects follow circular paths. This resulted in a horribly complex model, replete with epicycles heaped upon deferents, upon equants, upon eccentrics. In The Sleepwalkers, Arthur Koestler’s history of early astronomy, the Ptolemaic model is described as ‘the product of tired philosophy and decadent science’. But despite being fundamentally wrong, the Ptolemaic system satisfied one of the basic requirements of a scientific model, which is that it predicted the position and movement of every planet to a higher degree of accuracy than any previous model. Even Aristarchus’ Sun-centred model of the universe, which happens to be basically correct, could not predict the motion of the planets with such precision. So, all in all, it is not surprising that Ptolemy’s model endured while Aristarchus’ disappeared. Table 2 summarises the key strengths and weaknesses of the two models, as understood by the ancient Greeks, and it serves only to reinforce the apparent superiority of the Earth-centred model.

      Ptolemy’s Earth-centred model was enshrined in his Hè megalè syntaxis (‘The Great Collection’), written in about AD 150, which became the most authoritative text on astronomy for centuries to come. In fact, every astronomer in Europe for the next millennium was influenced by the Syntaxis, and none of them seriously questioned its Earth-centred picture of the universe. Syntaxis reached an even wider audience in AD 827, when it was translated into Arabic and retitled the Almagest (‘The Greatest’). So, during the lull in scholasticism during the European Middle Ages, Ptolemy’s ideas were kept alive and studied by the great Islamic scholars in the Middle East. During the golden age of the Islamic empire, Arab astronomers invented many new astronomical instruments, made significant celestial observations and built several major observatories, such as the al-Shammasiyyah observatory in Baghdad, but they never doubted Ptolemy’s Earth-centred universe with its planetary orbits defined by circles within circles within circles.

      As Europe finally began to emerge from its intellectual slumber, the ancient knowledge of the Greeks was exported back to the West via the Moorish city of Toledo in Spain, where there was a magnificent Islamic library. When the city was captured from the Moors by the Spanish King Alfonso VI in 1085, scholars all over Europe were given an unprecedented opportunity to gain access to one of the world’s most important repositories of knowledge. Most of the library’s contents were written in Arabic, so the first priority was to establish an industrial-scale bureau of translation. Most translators worked with the aid of an intermediary to translate from Arabic into the Spanish vernacular, which they then translated into Latin, but one of the most prolific and brilliant translators was Gerard of Cremona, who learned Arabic so that he could achieve a more direct and accurate interpretation. He had been drawn to Toledo by rumours that Ptolemy’s masterpiece was to be found at the library and, of the seventy-six seminal books СКАЧАТЬ