How to Build a Car: The Autobiography of the World’s Greatest Formula 1 Designer. Adrian Newey
Чтение книги онлайн.

Читать онлайн книгу How to Build a Car: The Autobiography of the World’s Greatest Formula 1 Designer - Adrian Newey страница 21

СКАЧАТЬ remaining as chief designer on the Indycar at March. What’s more, while Truesports was based in Columbus, Ohio, not the most exciting place to live, Kraco was in LA, which sounded a lot more appealing.

      And so, after two years’ race engineering at Truesports, and having forged a wonderful relationship with Bobby, I decided to bid them a reluctant farewell and join Kraco for the race-engineering side of things.

      I was still pulling double-duty, though, from July flying regularly back to the UK between races to begin research for the 86C.

      Knowing that I would be in charge of design for the 1986 car allowed me to put in place a much more thorough wind tunnel and research programme than had been the case for the 1985 car’s rushed schedule. The chassis was quite a bit narrower and more elegant. But the big step forward was at the rear. By regulation, IndyCars have a single turbo, and it was a big unit. I had the idea of rotating it through 90 degrees, so instead of sitting across the car, it would sit longitudinally along the axis with the exhaust facing forwards rather than backwards. That way we could split the exhaust into two tailpipes, one to the left, one to the right, with each tailpipe looping around in a 180° bend, then transitioning into a fantail that could blow the back end of the diffuser.

      We started developing that in the wind tunnel, using compressed air fed down through the mounting arm of the model, into the model and out through the exhaust, and it looked promising. I then redesigned the rear suspension completely to package it, which wasn’t easy because you now had a longitudinal turbocharger with the exhausts and waste gates all trying to vie for the same space with the rear suspension, particularly the spring/damper units.

      We rearranged the rear dampers so they sat longitudinally beside the gearbox and above the exit from the exhaust. To prevent people from putting the exhausts into the diffuser – a practice that had become commonplace in Formula One during the 1984 season – IndyCar rules stated that the diffuser must not have holes in it. However, the spring/damper units would need a heat shield to prevent them from being burnt by the exhaust gas, so I positioned the units in such a way that the heat shield would be naturally tail up, creating a ‘coanda effect’ downforce-producing extension to the tailpipe. Not legal if considered part of the diffuser, but legal if considered as being there for the primary purpose of protecting the mechanical parts. This arrangement created a very high velocity/low pressure at the back of the main diffuser, drawing much more air through it. The overall package looked a powerful step forward in the tunnel.

image

      Figure 6a: Technical drawing of the rear damper top of the March 86C.

      Over the Atlantic was where I came up with the idea for the exhaust system and rear suspension. Not only that, but I very clearly remember sketching out the roll hoop layout on the plane.

      The new roll hoop was made out of aluminium honeycomb instead of the traditional steel roll hoop, making it lighter and more aerodynamic, with a little titanium capping piece on top. It satisfied the regulations and I felt it was quite safe, because the problem with the steel roll hoop is that you’ve got four tubes going into a composite structure and you need to try to spread that load out so that the tubes don’t just punch a hole straight through the structure. It’s not easy and there have been plenty of instances where the roll hoop itself has stood an accident okay, but it’s punched straight through the chassis and therefore been pretty useless.

image

      Figure 6b: Sketch of the split-exhaust and longitudinal turbocharger layout of the March 86C.

      It turned out to be a bit controversial. One thing I hadn’t really taken into account was that if you went upside down on grass or in gravel, because it was a very pointed structure, it would just plough a furrow and therefore wouldn’t properly protect the driver in the way a more rounded hoop would. But we raced with it and, fortunately, there was no such accident.

      Which brings me on to an important philosophical point – one that we all struggled with in those days.

      I remember being in Italy in May 1982, peering through the window of a TV shop and watching the accident that killed Gilles Villeneuve at the Belgian Grand Prix. Italian TV had no compunction about broadcasting the accident in all its horrible detail, and we were treated over and over again to images of Gilles lying in the middle of the track, his car having literally snapped in two.

      I can only speculate how it must feel for other drivers seeing something like that. I’ve seen drivers on whom it has weighed heavily. Damon Hill, for example, whose own father, Graham Hill, died in a related accident, would probably admit that the risk began to affect his driving. Drivers get older, they have kids. It changes them.

      As for the designer? The Ferrari in which Gilles died was one of Harvey Postlethwaite’s cars. He’d moved to Ferrari from Fittipaldi, and I recall thinking that it must have been pretty bad for him.

      Tragically I was to learn how it felt the hard way. I’ve had one driver die in a car I’ve designed. Ayrton. That fact weighs heavily upon me, and while I’ve got many issues with the FIA and the way they have governed the sport over the years, I give them great credit for their contribution to improving safety in the sport.

      The chassis constructor is responsible for two aspects of safety, first, trying to avoid a car component failure. Clearly if a suspension member breaks or a wing falls off at the wrong point of the circuit, the car’s going to have an accident, and if that happens it is because somebody on the team has made a mistake. It could be in the design, manufacturing, lack of inspection; it could be a mechanic forgetting to do a bolt up. There is a clause in the FIA regulations warning against unsafe construction design, but the onus is on the teams to do everything we can to put systems in place to eliminate the possibility of human error.

      The second aspect of safety is what happens once the accident starts and the car hits whatever it hits; usually a wall, barrier or another car. How does it withstand the impact?

      That’s the bit that is covered by regulations nowadays and it’s where the FIA has governed and legislated well, particularly as a result of the work done by the late Sid Watkins, who was the Chief Medical Officer at the FIA.

      Sid was a good friend, a very good man. He started his work just after the war when motorcyclists tended not to wear helmets and would often suffer terrible head trauma in the event of an accident.

      Sid understood that the best thing for injuries of this kind was to minimise swelling by keeping the body cold. His early work consisted of laying patients on a block of fish ice to keep the body temperature as low as possible. He became a brain surgeon but, after being recruited into Formula One by Bernie Ecclestone, he contributed hugely to making cars safer through his research into how to absorb energy with headrest foams, nose, side and rear-impact structures, and so on.

      Back in 1986, in IndyCar, there were barely any safety regulations. You had to show your roll hoop was strong enough by calculation only, and the fuel tank bladder had to be made out of certain material and positioned between the seatback and front of the engine, but that was about it.

      So the designer of the car was faced with a choice: if you come up with a design which is faster but less safe, what do you do? For instance, the driver’s feet are at the front of the car, so if the nose box isn’t robust he’s likely to badly break or even lose his legs. But a stronger nose box will be heavier.

      Ultimately СКАЧАТЬ