Невероятный иммунитет. Как работает естественная защита вашего организма. Дэниэл М. Дэвис
Чтение книги онлайн.

Читать онлайн книгу Невероятный иммунитет. Как работает естественная защита вашего организма - Дэниэл М. Дэвис страница 8

СКАЧАТЬ уже, задним числом, понятно вот что: необходимо, чтобы иммунная система не просто откликалась на то, чего в теле прежде не было. Пища, безвредные кишечные бактерии или пыль в воздухе – не часть человеческого тела, но никакой угрозы не представляют и не должны вызывать действие иммунной системы. Но, как сказал в 1930 году Джордж Бернард Шоу, «наука неспособна решить одну задачу, не поставив при этом еще десять» [37]. Даже если оставить в стороне самую крупную неувязку, с которой столкнулись соображения Джейнуэя, – недостаток экспериментальных данных в поддержку этих соображений, – имелась и теоретическая нестыковка: микробы и вирусы стремительно размножаются. Скорость их размножения не умещается в голове. Одна-единственная зараженная вирусом человеческая клетка способна произвести сотню новых вирусных частиц. Это означает, что всего три экземпляра вируса, пройдя четыре цикла воспроизведения – примерно за несколько дней, – приведут к 300 миллиардам новых вирусных частиц [38]. И так дело обстоит не только с вирусами: в оптимальных условиях бактерии делятся каждые двадцать минут, то есть одна бактерия способна произвести пять миллиардов триллионов (5 × 1021) бактерий всего за день – примерно столько звезд во Вселенной [39]. На практике микробы в человеческом теле в таких масштабах размножаться неспособны, потому что для этого потребовался бы неограниченный объем ресурса, но тем не менее популяция микробов стремительно достигает громадных размеров – гораздо быстрее, чем мы со своими двумя жалкими отпрысками в расчете на семейную пару, за целую жизнь [40]. Это подводит нас к ключевой трудности, возникающей в связи с соображениями Джейнуэя: всякий раз, когда микроб размножается, у него в генах происходят случайные перемены – мутации, – и из-за них микроб с немалой вероятностью или даже неизбежно теряет молекулярные характеристики, замеченные нашей иммунной системой. Иными словами, в целой популяции вирусов или бактерий некоторые чисто случайно – потому что их очень много – окажутся с генетическими отличиями, из-за которых изменится та часть микроба, с которой образ-распознающий рецептор должен связываться. Микробы, у которых нет «молекулярного образа», избегут распознания иммунной системой и бодро размножатся.

      Джейнуэй это понимал и предположил, что «распознаваемый образ должен быть результатом комплексного исключительного [процесса] внутри микроорганизма» [41]. Иначе говоря, узнаваемая структура микроба должна быть чем-то настолько исключительно важным для его жизнедеятельности, что изменить ее было бы столь же исключительно трудно – если вообще возможно. У Джейнуэя были данные о том, что у микробов такие особенности есть – и насущно необходимые для их выживания, и уязвимые для атаки: пенициллин действует как раз благодаря этому. Когда бактерия делится, ей нужно выстроить клеточную стенку, облекающую две дочерние клетки. Вот что важно: процесс этот настолько сложный, что бактерия не запросто способна СКАЧАТЬ



<p>37</p>

  Эти слова Джордж Бернард Шоу произнес в Лондоне 28 октября 1930 года на открытом обеде в честь Альберта Эйнштейна. Фрагменты речи Шоу приводятся в: Michael Holroyd, ‘Albert Einstein, Universe Maker’, New York Times, 14 марта 1991 года.

<p>38</p>

  Исходя из расчета: 3 × 1004 = 3 × 108.

<p>39</p>

  Исходя из расчета 72 делений за 24 часа (раз в 20 минут), что приводит к 272 потомкам.

<p>40</p>

  По сути, это означает, что процесс эволюции путем естественного отбора происходит у вирусов гораздо быстрее, чем у нас. У некоторых вирусов все еще более прытко, поскольку скорость, с которой возникают генетические вариации, когда вирус размножается, гораздо выше, чем в человеческих организмах (потому что машинерия копирования генетического материала у некоторых вирусов довольно небрежна). Вирусам эта особенность не вредит: любой бракованный экземпляр мало влияет на судьбу остальной популяции.

<p>41</p>

  Janeway (1989).