Education: How Old The New. James Joseph Walsh
Чтение книги онлайн.

Читать онлайн книгу Education: How Old The New - James Joseph Walsh страница 14

Название: Education: How Old The New

Автор: James Joseph Walsh

Издательство: Public Domain

Жанр: Зарубежная классика

Серия:

isbn:

isbn:

СКАЧАТЬ one of the seven wonders of the world, the Pharos at Alexandria, were products of this university. Its medical school was famous when Cos had somewhat declined, and Chrysippos was one of the leading physicians of the world and one of the acknowledged great teachers of medicine when Erasistratos studied under him at Cnidos, and obtained that scientific training and incentive to original research which was to prove so valuable to Alexandria.

      His colleague, Herophilos, was quite as distinguished as Erasistratos and owed his training to the rival school of Cos. Whether it was intentional or not to secure these two products of rival schools for the healthy spirit of competition that would come from it, and because they wanted to have at Alexandria the emulation that would naturally be aroused by such a condition, is not known, but there can be no doubt of the wisdom of the choice and of the foresight which dictated it. Herophilos had studied medicine under Praxagoras, one of the best-known successors of Hippocrates. While distinguished as a surgeon he had more influence on medicine than almost any man of his time, except possibly Erasistratos. He was, however, a great anatomist and, above all, a zoologist who, according to tradition, had obtained his knowledge of animals from the most careful zootomy of literally thousands of specimens. His fair fame is blackened by the other tradition that he practised vivisection on human beings–criminals being turned over to him for that purpose by the Ptolemys, who were deeply interested in his researches. The traditions in this matter, however, serve to confirm the idea of his zeal as an investigator and his ardent labors in medical science. Tertullian declares that he dissected at least 600 living persons. We know that he did much dissection of human cadavers and there is question whether Tertullian's statement was not gross exaggeration due to confusion between dissection and vivisection.

      Both of these men did some magnificent work upon the brain. This being the first period in the history of humanity when human beings could be dissected freely, it is not surprising that they should take up brain anatomy with ardent devotion, in the hope to solve some of the many human problems that seemed to centre in this complex organ. Before this anatomy had been learned mainly from animals, and as human beings differ most widely from animals by their brain, naturally, as soon as the opportunity presented itself, anatomists gave themselves to thorough work on this structure where so many discoveries were waiting to be made. After the brain and nervous system the heart was studied, and Erasistratos' description of its valves, of its general structure and even of its physiology, show how much he knew. To know something of the work of these two anatomists is to see at once what is accomplished in a university medical school where medical science, and not the mere practice of medicine alone, is the object of teachers and students. I have told the story of this in my address before the graduates of the St. Louis Medical University Medical School, and here I shall simply refer you to that.7

      Of course all these studies at the university could not be conducted without laboratory equipment. Of itself the dissecting room is a laboratory and until very recent years it was the only laboratory that most of the medical schools had. The numerous experiments in vivisection, if they really took place, required special arrangements and could only be conducted in what we now call a laboratory of physiology. This is not idle talk but represents the realities of the situation. Other laboratories there must have been. It would be quite impossible to conceive of a man like Archimedes carrying on his work, especially of the application of mathematical principles to mechanics, of the demonstration of mechanical principles themselves and of the invention of the many interesting machines which he made, without what we call laboratory facilities. The Ptolemys were interested in his work, they supplied him with a place to do it, many of his advanced students at least must have been interested in this work so that, as I see it, there was what we would now call a physical laboratory in connection with his teaching at the University of Alexandria.

      What we know about the development of zoology under Erasistratos and Herophilos would seem to indicate that there must have been such special facilities for the investigation of zoological problems as we would call a laboratory of physiology. A magnificent collection of plants was made for the university and these were studied and classified, and while we hear nothing of their dissection, there were at least botanical rooms for methodical study, if not botanical laboratories. Ptolemy's work represented the culmination of astronomical information which had been gathered for several centuries. This could only be brought together in what we would now call an observatory and this represents another laboratory of physical science. Our laboratory work, therefore, must have been anticipated to a great extent. We must not forget that our university laboratories are only a couple of generations old altogether and that they represent a very recent development of educational work. It is extremely interesting, therefore, to find them anticipated in germ at least, if not in actuality, at the first modern university of which we have sufficiently complete records to enable us to appreciate just the sort of work that was being done and the ways and modes of its education.

      I think that even this comparatively meagre description of the first university of which we have knowledge makes it very clear that Alexandria deserves the name of the First Modern University. It resembled our own in so many ways that I, for one, find it impossible to discover any essential difference between them. At Alexandria they anticipated every phase of modern university education. Their literature was studied from a scientific standpoint. They devoted themselves to an overwhelming extent to the study of the physical sciences and mathematics, their professors were inventors, developers of practical applications of science, experts to whom appeal was made when important scientific questions had to be settled, and their teaching was done with demonstrations and a laboratory system very like our own. Nothing that I know illustrates better the tendency of human achievement not to represent advance but to occur in cycles than the story of this first modern university. That is why I have tried to tell it to you as an exquisite illustration of How Old the New Is in Education.

      MEDIAEVAL SCIENTIFIC UNIVERSITIES

      "Qui ad pauca respiciunt faciliter pronuntiant." –AN OLD PHILOSOPHER.

      [Those who know little readily pronounce judgment.]

      MEDIAEVAL SCIENTIFIC UNIVERSITIES 8

      Probably nothing is more surprising to any one who knows the history of science and of scientific education than the attitude of mind of the present generations, educated as they are mainly along scientific lines, toward the supposed lack of interest of preceding generations in science. Our scholars and professors seem to be almost universally of the opinion that the last few generations are the first who ever devoted themselves seriously to the study of science, or who, indeed, were free enough from superstitions and persuasions and beliefs of many kinds to give themselves up freely to scientific investigation. In the light of what we know or, perhaps I should say, what we are coming to know now with regard to the educational interests of the men of the various times, this would be an amusing, if it were not an amazing, presumption on our part. Over and over again in the world's history men have been interested in science, both in pure science and in applied science, in the culture sciences and in the practical sciences.

      Apparently men forget that philosophy is science and ethics is science and metaphysics is scientific and logic is science and there is a science of language. Of course the protest that will be heard at once is that what we now mean by science is physical science. Even taking the word science in this narrower sense, however, how can people forget that our mathematics comes to us from the old Greeks, that old Greek contributions to medicine and, above all, to the scientific side of it still remain valuable, that physical science, pure and applied, developed wonderfully at the University of Alexandria, that there was a beginning of chemistry and the great foundations of astronomy laid in the long ago, and that men evidently were quite as much interested in the problems of nature around them as they have been at any time: Archimedes insisting that if he only had some place to rest his lever he could move the world, inventing the screw pump, fashioning his great burning-mirrors, and a little later Heron inventing the first germ of the turbine engine, while all СКАЧАТЬ



<p>7</p>

The details of what was accomplished in the Medical Department at Alexandria were given to some extent at least in the lecture in Brooklyn, but are omitted here in order to avoid repetitions in the printed copy.

<p>8</p>

The material for this address was originally gathered for a lecture in a course on the History of Education delivered to the Sisters of Charity of Mount St. Vincent's, some 500 in number; teachers in the Catholic public schools of New York City, and for corresponding lectures to the Academy of the Sacred Heart, Kenwood. The address was delivered substantially in its present form at the Catholic Club of Cornell University, under the title "The Relations of the Church to Science."