Название: Математика и криптография. Тайны шифров и логическое мышление
Автор: Р. В. Душкин
Издательство: АСТ
Жанр: Учебная литература
Серия: Библиотека вундеркинда. Научные сказки
isbn: 978-5-17-096808-4
isbn:
Что делают настоящие криптоаналитики для анализа подобной ситуации? Они строят графики. Вот два графика (они называются «гистограммами»):
Гистограмма частот символов в шифрограмме
Гистограмма частот букв русского языка
Ты можешь представить себе, что эти графики – набор вертикальных штырьков, на которые нанизаны блины, как в детской пирамидке или головоломке «ханойская башня». Количество блинов на штырьке соответствует количеству целых процентов, а последний блин по толщине соответствует долям процента. Если расположить эти башни по убыванию количества блинов, то как раз получатся такие гистограммы. По горизонтали отложены буквы по убыванию частот их в языке, а по вертикали – относительные частоты в процентах.
Видишь, на этих графиках обозначены подсчитанные частоты символов. На левом графике отложены частоты символов из шифрограммы, а на правом – частоты букв русского языка. Вид графиков различается: для шифрограммы он более пологий. Это уже указывает на то, что нарушено распределение частот, а значит, для шифрования был избран не одноалфавитный шифр, а что-то другое. Кстати, в качестве тренировки рекомендую построить такую гистограмму для символов из шифровки первой недели: ты увидишь, что она очень похожа на гистограмму частот для букв русского языка.
Итак, мы с помощью математических методов убедились, что это не одноалфавитная замена. Возможно, это многоалфавитный шифр. Попробуем проверить. Как я уже сказал, следует сначала попытаться найти длину ключа. Для этого в шифрограмме надо искать одинаковые последовательности букв. Это сложно, и надо собрать всё своё внимание, чтобы найти их.
Быстрый просмотр шифрограммы показывает, что есть одно семисимвольное сочетание «ЗЗЫХШЮХ», которое встречается в шифрограмме дважды. При этом повторяющихся восьмисимвольных сочетаний нет. (Надо отметить, что чем больше в повторяющихся сочетаниях символов, тем лучше). Проверим, на каких позициях стоят эти буквосочетания. Первое стоит на позиции 49, а второе – на 509. Разница: 509 – 49 = 460. Запомним.
Больше семисимвольных сочетаний нет, поэтому посмотрим на шестисимвольные. Есть четыре таких буквосочетания, но первые два из них – это префикс и суффикс семисимвольного сочетания, рассмотренного ранее, поэтому учитывать их не будем. Другие – это «ЛЕПФВТ» и «ТЩРГГП». Первое из этих двух буквосочетаний встречается на позициях 225 и 421. Их разница: 421–225 = 196. Второе стоит на позициях 294 и 330, и разница составляет 330–294 = 36.
Итак, у нас есть три числа, три разницы: 460, 196 и 36. Рассмотрим наибольший общий делитель этих чисел. Он равен 4. В принципе, на этом можно остановиться, поскольку мы только что нашли длину ключа. Теоретически, ключ может быть длиной в 2 символа (поскольку 4 делится на 2), но можно предположить, что СКАЧАТЬ