КЭД – странная теория света и вещества. Ричард Филлипс Фейнман
Чтение книги онлайн.

Читать онлайн книгу КЭД – странная теория света и вещества - Ричард Филлипс Фейнман страница 8

СКАЧАТЬ стекла демонстрируют явление, называемое «интерференцией». По мере увеличения толщины стекла степень частичного отражения света проходит повторяющийся цикл от 0 до 16 % без признаков затухания

      Таким образом, получается, что предсказанные нами 8 % верны лишь в среднем (тогда как в действительности величина регулярно меняется от нуля до 16 %). Это среднее значение верно только дважды в цикле – так стоящие часы показывают правильное время два раза в сутки. Чем можно объяснить эту странную зависимость частичного отражения от толщины стекла? Как может передняя поверхность отражать 4 % света (что доказывается нашим первым экспериментом), если, поместив снизу на нужном расстоянии вторую поверхность, мы можем каким-то образом «выключить» отражение? А поместив эту вторую поверхность на несколько иной глубине, мы можем «усилить» отражение до 16 %! Может ли быть, что задняя поверхность оказывает какое-то влияние или действие на способность передней поверхности отражать свет? А что, если мы добавим третью поверхность?

      При наличии третьей или любого другого числа следующих поверхностей количество отражаемого света опять меняется. Получается, что мы с нашей теорией перебираем поверхности одну за другой, не зная, достигли ли мы, наконец, последней. Нужно ли фотону делать то же самое, чтобы «решить», отражаться ли ему от передней поверхности?

      У Ньютона было несколько остроумных соображений относительно этой проблемы[3], но в итоге он понял, что еще не создал удовлетворительной теории.

      На протяжении многих лет после Ньютона частичное отражение от двух поверхностей благополучно объяснялось волновой теорией[4], но когда провели эксперименты, в которых на фотоумножители светили очень слабым светом, волновая теория потерпела крах. По мере того, как свет становился все более тусклым, фотоумножители продолжали издавать полновесные щелчки – только они раздавались все реже. Свет вел себя как частицы.

      Сегодня ситуация такова, что у нас нет хорошей модели для объяснения частичного отражения от двух поверхностей; мы только вычисляем вероятность того, что в данный фотоумножитель попадет фотон, отраженный от стеклянной пластинки. Я выбрал эти вычисления в качестве первого примера, чтобы познакомить вас с методом квантовой электродинамики. Я собираюсь показать вам, «как мы считаем бобы», – что делают физики, чтобы получить правильный ответ. Я не собираюсь объяснять, как фотоны в действительности «решают» вопрос, отскочить ли назад или пройти насквозь. Это неизвестно. (Возможно, вопрос не имеет смысла.) Я только покажу вам, как вычислить правильную вероятность того, что свет отразится от стекла данной толщины, потому что это единственное, что физики умеют делать! То, что нам приходится делать, чтобы решить эту задачу, аналогично тому, что приходится делать, чтобы решить любую другую квантово-электродинамическую задачу.

      Вам придется напрячь силы – но не потому, что это трудно понять, а потому, что это СКАЧАТЬ



<p>3</p>

Нам очень повезло, что Ньютон убедил себя в том, что свет состоит из «корпускул»: мы можем увидеть, какой сложный путь должен пройти живой и пытливый ум, пытаясь объяснить явление частичного отражения от двух или большего числа поверхностей. (Тем, кто считал, что свет – это волны, не надо было ломать над этим голову.) Ньютон рассуждал следующим образом. Хотя кажется, что свет отражается от передней поверхности, он не может отражаться от этой поверхности. Если бы он отражался, то каким образом уже отраженный от передней поверхности свет мог бы опять оказаться задержанным, если толщина такова, что отражения не должно быть вообще? Тогда свет должен отражаться от второй поверхности. Но чтобы объяснить тот факт, что толщина стекла определяет степень частичного отражения, Ньютон предложил следующую идею: свет, ударившись о первую поверхность, создает нечто вроде волны или поля, которое движется вместе со светом и предрасполагает его к тому, чтобы отразиться или не отразиться от второй поверхности. Он называл этот процесс «приступами легкого отражения или легкого прохождения», циклически повторяющимися в зависимости от толщины стекла. // В связи с этой идеей возникают две трудности. Первая – это эффект добавочных поверхностей. Каждая новая поверхность влияет на отражение – это я описал в тексте. Другая проблема состоит в том, что свет, безусловно, отражается от озера, у которого нет второй поверхности. Так что свет должен отражаться от передней поверхности. В случае единичных поверхностей Ньютон говорил, что свет имеет предрасположение к тому, чтобы отразиться. Можем ли мы иметь теорию, согласно которой свет знает, в какую поверхность он попадает и единственная ли она? // Ньютон не подчеркивал специально этих противоречий в своей теории «приступов легкого отражения и прохождения», хотя ясно, что он сознавал ее неудовлетворительность. Во времена Ньютона не обращали особого внимания на недостатки теории, их замазывали – стиль отличался от того, к которому мы привыкли в науке сегодня, когда мы указываем на все те места, где наша теория не согласуется с данными эксперимента. Я не пытаюсь обвинить Ньютона. Я просто хочу высказаться в пользу того, как мы обмениваемся информацией в науке сегодня.

<p>4</p>

Эта идея основывалась на способности волн взаимно усиливаться или взаимно гаситься, и расчеты в рамках этой модели соответствовали результатам как экспериментов Ньютона, так и экспериментов, проводившихся на протяжении столетий после Ньютона. Но когда были разработаны приборы, достаточно чувствительные, чтобы реагировать на единичный фотон, волновая теория предсказала, что «щелчки» фотоумножителя будут становиться все тише и тише, в то время как они сохраняли полную силу, и только раздавались все более редко. Ни одна разумная модель не могла объяснить этот факт, поэтому наступил период, требовавший известной хитрости. Надо было знать, какой эксперимент вы анализируете, чтобы сказать, что такое свет – волны или частицы. Эта путаница была названа «корпускулярно-волновым дуализмом» света, и кто-то пошутил, что свет представляет собой волны по понедельникам, средам и пятницам; частицы – по вторникам, четвергам и субботам, а по воскресеньям мы думаем об этом. Цель этих лекций – рассказать о том, как эта загадка была в конце концов «разрешена».