The Origin of Species by Means of Natural Selection. Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу The Origin of Species by Means of Natural Selection - Darwin Charles страница 6

СКАЧАТЬ him that the pigs ate the paint-root (Lachnanthes), which coloured their bones pink, and which caused the hoofs of all but the black varieties to drop off; and one of the "crackers" (i.e. Virginia squatters) added, "we select the black members of a litter for raising, as they alone have a good chance of living." Hairless dogs have imperfect teeth; long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large feet. Hence if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly modify unintentionally other parts of the structure, owing to the mysterious laws of correlation.

      The results of the various, unknown, or but dimly understood laws of variation are infinitely complex and diversified. It is well worth while carefully to study the several treatises on some of our old cultivated plants, as on the hyacinth, potato, even the dahlia, etc.; and it is really surprising to note the endless points of structure and constitution in which the varieties and sub-varieties differ slightly from each other. The whole organisation seems to have become plastic, and departs in a slight degree from that of the parental type.

      Any variation which is not inherited is unimportant for us. But the number and diversity of inheritable deviations of structure, both those of slight and those of considerable physiological importance, are endless. Dr. Prosper Lucas' treatise, in two large volumes, is the fullest and the best on this subject. No breeder doubts how strong is the tendency to inheritance; that like produces like is his fundamental belief: doubts have been thrown on this principle only by theoretical writers. When any deviation of structure often appears, and we see it in the father and child, we cannot tell whether it may not be due to the same cause having acted on both; but when among individuals, apparently exposed to the same conditions, any very rare deviation, due to some extraordinary combination of circumstances, appears in the parent – say, once among several million individuals – and it reappears in the child, the mere doctrine of chances almost compels us to attribute its reappearance to inheritance. Every one must have heard of cases of albinism, prickly skin, hairy bodies, etc., appearing in several members of the same family. If strange and rare deviations of structure are truly inherited, less strange and commoner deviations may be freely admitted to be inheritable. Perhaps the correct way of viewing the whole subject would be, to look at the inheritance of every character whatever as the rule, and non-inheritance as the anomaly.

      The laws governing inheritance are for the most part unknown; no one can say why the same peculiarity in different individuals of the same species, or in different species, is sometimes inherited and sometimes not so; why the child often reverts in certain characteristics to its grandfather or grandmother or more remote ancestor; why a peculiarity is often transmitted from one sex to both sexes, or to one sex alone, more commonly but not exclusively to the like sex. It is a fact of some importance to us, that peculiarities appearing in the males of our domestic breeds are often transmitted, either exclusively or in a much greater degree, to the males alone. A much more important rule, which I think may be trusted, is that, at whatever period of life a peculiarity first appears, it tends to reappear in the offspring at a corresponding age, though sometimes earlier. In many cases this could not be otherwise; thus the inherited peculiarities in the horns of cattle could appear only in the offspring when nearly mature; peculiarities in the silk-worm are known to appear at the corresponding caterpillar or cocoon stage. But hereditary diseases and some other facts make me believe that the rule has a wider extension, and that, when there is no apparent reason why a peculiarity should appear at any particular age, yet that it does tend to appear in the offspring at the same period at which it first appeared in the parent. I believe this rule to be of the highest importance in explaining the laws of embryology. These remarks are of course confined to the first APPEARANCE of the peculiarity, and not to the primary cause which may have acted on the ovules or on the male element; in nearly the same manner as the increased length of the horns in the offspring from a short-horned cow by a long-horned bull, though appearing late in life, is clearly due to the male element.

      Having alluded to the subject of reversion, I may here refer to a statement often made by naturalists – namely, that our domestic varieties, when run wild, gradually but invariably revert in character to their aboriginal stocks. Hence it has been argued that no deductions can be drawn from domestic races to species in a state of nature. I have in vain endeavoured to discover on what decisive facts the above statement has so often and so boldly been made. There would be great difficulty in proving its truth: we may safely conclude that very many of the most strongly marked domestic varieties could not possibly live in a wild state. In many cases we do not know what the aboriginal stock was, and so could not tell whether or not nearly perfect reversion had ensued. It would be necessary, in order to prevent the effects of intercrossing, that only a single variety should be turned loose in its new home. Nevertheless, as our varieties certainly do occasionally revert in some of their characters to ancestral forms, it seems to me not improbable that if we could succeed in naturalising, or were to cultivate, during many generations, the several races, for instance, of the cabbage, in very poor soil – in which case, however, some effect would have to be attributed to the DEFINITE action of the poor soil – that they would, to a large extent, or even wholly, revert to the wild aboriginal stock. Whether or not the experiment would succeed is not of great importance for our line of argument; for by the experiment itself the conditions of life are changed. If it could be shown that our domestic varieties manifested a strong tendency to reversion – that is, to lose their acquired characters, while kept under the same conditions and while kept in a considerable body, so that free intercrossing might check, by blending together, any slight deviations in their structure, in such case, I grant that we could deduce nothing from domestic varieties in regard to species. But there is not a shadow of evidence in favour of this view: to assert that we could not breed our cart and race-horses, long and short-horned cattle, and poultry of various breeds, and esculent vegetables, for an unlimited number of generations, would be opposed to all experience.

      CHARACTER OF DOMESTIC VARIETIES; DIFFICULTY OF DISTINGUISHING BETWEEN VARIETIES AND SPECIES; ORIGIN OF DOMESTIC VARIETIES FROM ONE OR MORE SPECIES.

      When we look to the hereditary varieties or races of our domestic animals and plants, and compare them with closely allied species, we generally perceive in each domestic race, as already remarked, less uniformity of character than in true species. Domestic races often have a somewhat monstrous character; by which I mean, that, although differing from each other and from other species of the same genus, in several trifling respects, they often differ in an extreme degree in some one part, both when compared one with another, and more especially when compared with the species under nature to which they are nearest allied. With these exceptions (and with that of the perfect fertility of varieties when crossed – a subject hereafter to be discussed), domestic races of the same species differ from each other in the same manner as do the closely allied species of the same genus in a state of nature, but the differences in most cases are less in degree. This must be admitted as true, for the domestic races of many animals and plants have been ranked by some competent judges as the descendants of aboriginally distinct species, and by other competent judges as mere varieties. If any well marked distinction existed between a domestic race and a species, this source of doubt would not so perpetually recur. It has often been stated that domestic races do not differ from each other in characters of generic value. It can be shown that this statement is not correct; but naturalists differ much in determining what characters are of generic value; all such valuations being at present empirical. When it is explained how genera originate under nature, it will be seen that we have no right to expect often to find a generic amount of difference in our domesticated races.

      In attempting to estimate the amount of structural difference between allied domestic races, we are soon involved in doubt, from not knowing whether they are descended from one or several parent species. This point, if it could be cleared up, would be interesting; if, for instance, it could be shown that the greyhound, bloodhound, terrier, spaniel and bull-dog, which we all know propagate their kind truly, were the offspring of any single species, then such facts would have great weight in making us doubt about the immutability of the many closely allied natural species – for instance, of the many foxes – inhabiting the СКАЧАТЬ