The Variation of Animals and Plants Under Domestication, Volume II (of 2). Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу The Variation of Animals and Plants Under Domestication, Volume II (of 2) - Darwin Charles страница 15

СКАЧАТЬ doubt it appears at first sight in the highest degree improbable that in every horse of every generation there should be a latent capacity and tendency to produce stripes, though these may not appear once in a thousand generations; that in every white, black, or other coloured pigeon, which may have transmitted its proper colour during centuries, there should be a latent capacity in the plumage to become blue and to be marked with certain characteristic bars; that in every child in a six-fingered family there should be the capacity for the production of an additional digit; and so in other cases. Nevertheless there is no more inherent improbability in this being the case than in a useless and rudimentary organ, or even in only a tendency to the production of a rudimentary organ, being inherited during millions of generations, as is well known to occur with a multitude of organic beings. There is no more inherent improbability in each domestic pig, during a thousand generations, retaining the capacity and tendency to develop great tusks under fitting conditions, than in the young calf having retained for an indefinite number of generations rudimentary incisor teeth, which never protrude through the gums.

      I shall give at the end of the next chapter a summary of the three preceding chapters; but as isolated and striking cases of reversion have here been chiefly insisted on, I wish to guard the reader against supposing that reversion is due to some rare or accidental combination of circumstances. When a character, lost during hundreds of generations, suddenly reappears, no doubt some such combination must occur; but reversions may be constantly observed, at least to the immediately preceding generations, in the offspring of most unions. This has been universally recognised in the case of hybrids and mongrels, but it has been recognised simply from the difference between the united forms rendering the resemblance of the offspring to their grandparents or more remote progenitors of easy detection. Reversion is likewise almost invariably the rule, as Mr. Sedgwick has shown, with certain diseases. Hence we must conclude that a tendency to this peculiar form of transmission is an integral part of the general law of inheritance.

      Monstrosities.– A large number of monstrous growths and of lesser anomalies are admitted by every one to be due to an arrest of development, that is to the persistence of an embryonic condition. If every horse or ass had striped legs whilst young, the stripes which occasionally appear on these animals when adult would have to be considered as due to the anomalous retention of an early character, and not as due to reversion. Now, the leg-stripes in the horse-genus, and some other characters in analogous cases, are apt to occur during early youth and then to disappear; thus the persistence of early characters and reversion are brought into close connexion.

      But many monstrosities can hardly be considered as the result of an arrest of development; for parts of which no trace can be detected in the embryo, but which occur in other members of the same class of animals or plants, occasionally appear, and these may probably with truth be attributed to reversion. For instance: supernumerary mammæ, capable of secreting milk, are not extremely rare in women; and as many as five have been observed. When four are developed, they are generally arranged symmetrically on each side of the chest; and in one instance a woman (the daughter of another with supernumerary mammæ) had one mamma, which yielded milk, developed in the inguinal region. This latter case, when we remember the position of the mammæ in some of the lower animals on both the chest and inguinal region, is highly remarkable, and leads to the belief that in all cases the additional mammæ in woman are due to reversion. The facts given in the last chapter on the tendency in supernumerary digits to regrowth after amputation, indicate their relation to the digits of the lower vertebrate animals, and lead to the suspicion that their appearance may in some manner be connected with reversion. But I shall have to recur, in the chapter on pangenesis, to the abnormal multiplication of organs, and likewise to their occasional transposition. The occasional development in man of the coccygeal vertebræ into a short and free tail, though it thus becomes in one sense more perfectly developed, may at the same time be considered as an arrest of development, and as a case of reversion. The greater frequency of a monstrous kind of proboscis in the pig than in any other mammal, considering the position of the pig in the mammalian series, has likewise been attributed, perhaps truly, to reversion.130

      When flowers which are properly irregular in structure become regular or peloric, the change is generally looked at by botanists as a return to the primitive state. But Dr. Maxwell Masters,131 who has ably discussed this subject, remarks that when, for instance, all the sepals of a Tropæolum become green and of the same shape, instead of being coloured with one alone prolonged into a spur, or when all the petals of a Linaria become simple and regular, such cases may be due merely to an arrest of development; for in these flowers all the organs during their earliest condition are symmetrical, and, if arrested at this stage of growth, they would not become irregular. If, moreover, the arrest were to take place at a still earlier period of development, the result would be a simple tuft of green leaves; and no one probably would call this a case of reversion. Dr. Masters designates the cases first alluded to as regular peloria; and others, in which all the corresponding parts assume a similar form of irregularity, as when all the petals in a Linaria become spurred, as irregular peloria. We have no right to attribute these latter cases to reversion, until it can be shown to be probable that the parent-form, for instance, of the genus Linaria had had all its petals spurred; for a change of this nature might result from the spreading of an anomalous structure, in accordance with the law, to be discussed in a future chapter, of homologous parts tending to vary in the same manner. But as both forms of peloria frequently occur on the same individual plant of the Linaria,132 they probably stand in some close relation to each other. On the doctrine that peloria is simply the result of an arrest of development, it is difficult to understand how an organ arrested at a very early period of growth should acquire its full functional perfection; – how a petal, supposed to be thus arrested, should acquire its brilliant colours, and serve as an envelope to the flower, or a stamen produce efficient pollen; yet this occurs with many peloric flowers. That pelorism is not due to mere chance variability, but either to an arrest of development or to reversion, we may infer from an observation made by Ch. Morren,133 namely, that families which have irregular flowers often "return by these monstrous growths to their regular form; whilst we never see a regular flower realise the structure of an irregular one."

      Some flowers have almost certainly become more or less completely peloric through reversion. Corydalis tuberosa properly has one of its two nectaries colourless, destitute of nectar, only half the size of the other, and therefore, to a certain extent, in a rudimentary state; the pistil is curved towards the perfect nectary, and the hood, formed of the inner petals, slips off the pistil and stamens in one direction alone, so that, when a bee sucks the perfect nectary, the stigma and stamens are exposed and rubbed against the insect's body. In several closely allied genera, as in Dielytra, &c., there are two perfect nectaries, the pistil is straight, and the hood slips off on either side, according as the bee sucks either nectary. Now, I have examined several flowers of Corydalis tuberosa, in which both nectaries were equally developed and contained nectar; in this we see only the redevelopment of a partially aborted organ; but with this redevelopment the pistil becomes straight, and the hood slips off in either direction; so that these flowers have acquired the perfect structure, so well adapted for insect agency, of Dielytra and its allies. We cannot attribute these coadapted modifications to chance, or to correlated variability; we must attribute them to reversion to a primordial condition of the species.

      The peloric flowers of Pelargonium have their five petals in all respects alike, and there is no nectary; so that they resemble the symmetrical flowers of the closely allied Geranium-genus; but the alternate stamens are also sometimes destitute of anthers, the shortened filaments being left as rudiments, and in this respect they resemble the symmetrical flowers of the closely allied genus, Erodium. Hence we are led to look at the peloric flowers of Pelargonium as having probably reverted to the state of some primordial form, the progenitor of the three closely related genera of Pelargonium, Geranium, and Erodium.

      In the peloric form of Antirrhinum majus, appropriately called the "Wonder," the tubular and elongated flowers СКАЧАТЬ



<p>130</p>

Isid. Geoffroy St. Hilaire, 'Des Anomalies,' tom. iii. p. 353. With respect to the mammæ in women, see tom. i. p. 710.

<p>131</p>

'Natural Hist. Review,' April, 1863, p. 258. See also his Lecture, Royal Institution, March 16, 1860. On same subject, see Moquin-Tandon, 'Eléments de Tératologie,' 1841, pp. 184, 352.

<p>132</p>

Verlot, 'Des Variétés,' 1865, p. 89; Naudin, 'Nouvelles Archives du Muséum,' tom. i. p. 137.

<p>133</p>

In his discussion on some curious peloric calceolarias, quoted in 'Journal of Horticulture,' Feb. 24, 1863, p. 152.