Volcanic Islands. Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу Volcanic Islands - Darwin Charles страница 8

Название: Volcanic Islands

Автор: Darwin Charles

Издательство: Public Domain

Жанр: Зарубежная классика

Серия:

isbn:

isbn:

СКАЧАТЬ of which the horizontal calcareous deposit, with its existing species of marine remains, gives evidence. Considering how well shells have been preserved in this stratum, it is singular that I could not find even a single small fragment of shell in the conglomerate at the bottom of the valleys. The bed of pebbles in the valley west of the town is intersected by a second valley joining it as a tributary, but even this valley appears much too wide and flat-bottomed to have been formed by the small quantity of water, which falls only during one short wet season; for at other times of the year these valleys are absolutely dry.

       RECENT CONGLOMERATE.

      On the shores of Quail Island, I found fragments of brick, bolts of iron, pebbles, and large fragments of basalt, united by a scanty base of impure calcareous matter into a firm conglomerate. To show how exceedingly firm this recent conglomerate is, I may mention, that I endeavoured with a heavy geological hammer to knock out a thick bolt of iron, which was embedded a little above low-water mark, but was quite unable to succeed.

      CHAPTER II. – FERNANDO NORONHA; TERCEIRA; TAHITI, ETC

      FERNANDO NORONHA.

      Precipitous hill of phonolite.

      TERCEIRA.

      Trachytic rocks: their singular decomposition by steam of high temperature.

      TAHITI. Passage from wacke into trap; singular volcanic rock with the vesicles half-filled with mesotype.

      MAURITIUS.

      Proofs of its recent elevation.

      Structure of its more ancient mountains; similarity with St. Jago.

      ST. PAUL'S ROCKS.

      Not of volcanic origin.

      Their singular mineralogical composition.

       FERNANDO NORONHA.

      During our short visit at this and the four following islands, I observed very little worthy of description. Fernando Noronha is situated in the Atlantic Ocean, in latitude 3 degrees 50 minutes S., and 230 miles distant from the coast of South America. It consists of several islets, together nine miles in length by three in breadth. The whole seems to be of volcanic origin; although there is no appearance of any crater, or of any one central eminence. The most remarkable feature is a hill 1,000 feet high, of which the upper 400 feet consist of a precipitous, singularly shaped pinnacle, formed of columnar phonolite, containing numerous crystals of glassy feldspar, and a few needles of hornblende. From the highest accessible point of this hill, I could distinguish in different parts of the group several other conical hills, apparently of the same nature. At St. Helena there are similar, great, conical, protuberant masses of phonolite, nearly one thousand feet in height, which have been formed by the injection of fluid feldspathic lava into yielding strata. If this hill has had, as is probable, a similar origin, denudation has been here effected on an enormous scale. Near the base of this hill, I observed beds of white tuff, intersected by numerous dikes, some of amygdaloidal basalt and others of trachyte; and beds of slaty phonolite with the planes of cleavage directed N.W. and S.E. Parts of this rock, where the crystals were scanty, closely resembled common clay-slate, altered by the contact of a trap-dike. The lamination of rocks, which undoubtedly have once been fluid, appears to me a subject well deserving attention. On the beach there were numerous fragments of compact basalt, of which rock a distant facade of columns seemed to be formed.

       TERCEIRA IN THE AZORES.

      The central parts of this island consist of irregularly rounded mountains of no great elevation, composed of trachyte, which closely resembles in general character the trachyte of Ascension, presently to be described. This formation is in many parts overlaid, in the usual order of superposition, by streams of basaltic lava, which near the coast compose nearly the whole surface. The course which these streams have followed from their craters, can often be followed by the eye. The town of Angra is overlooked by a crateriform hill (Mount Brazil), entirely built of thin strata of fine-grained, harsh, brown-coloured tuff. The upper beds are seen to overlap the basaltic streams on which the town stands. This hill is almost identical in structure and composition with numerous crateriformed hills in the Galapagos Archipelago.

       EFFECTS OF STEAM ON THE TRACHYTIC ROCKS.

      In the central part of the island there is a spot, where steam is constantly issuing in jets from the bottom of a small ravine-like hollow, which has no exit, and which abuts against a range of trachytic mountains. The steam is emitted from several irregular fissures: it is scentless, soon blackens iron, and is of much too high temperature to be endured by the hand. The manner in which the solid trachyte is changed on the borders of these orifices is curious: first, the base becomes earthy, with red freckles evidently due to the oxidation of particles of iron; then it becomes soft; and lastly, even the crystals of glassy feldspar yield to the dissolving agent. After the mass is converted into clay, the oxide of iron seems to be entirely removed from some parts, which are left perfectly white, whilst in other neighbouring parts, which are of the brightest red colour, it seems to be deposited in greater quantity; some other masses are marbled with two distinct colours. Portions of the white clay, now that they are dry, cannot be distinguished by the eye from the finest prepared chalk; and when placed between the teeth they feel equally soft-grained; the inhabitants use this substance for white-washing their houses. The cause of the iron being dissolved in one part, and close by being again deposited, is obscure; but the fact has been observed in several other places. (Spallanzani, Dolomieu, and Hoffman have described similar cases in the Italian volcanic islands. Dolomieu says the iron at the Panza Islands is redeposited in the form of veins (page 86 "Memoire sur les Isles Ponces"). These authors likewise believe that the steam deposits silica: it is now experimentally known that vapour of a high temperature is able to dissolve silica.) In some half-decayed specimens, I found small, globular aggregations of yellow hyalite, resembling gum-arabic, which no doubt had been deposited by the steam.

      As there is no escape for the rain-water, which trickles down the sides of the ravine-like hollow, whence the steam issues, it must all percolate downwards through the fissures at its bottom. Some of the inhabitants informed me that it was on record that flames (some luminous appearance?) had originally proceeded from these cracks, and that the flames had been succeeded by the steam; but I was not able to ascertain how long this was ago, or anything certain on the subject. When viewing the spot, I imagined that the injection of a large mass of rock. like the cone of phonolite at Fernando Noronha, in a semi-fluid state, by arching the surface might have caused a wedge-shaped hollow with cracks at the bottom, and that the rain- water percolating to the neighbourhood of the heated mass, would during many succeeding years be driven back in the form of steam.

       TAHITI (OTAHEITE).

      I visited only a part of the north-western side of this island, and this part is entirely composed of volcanic rocks. Near the coast there are several varieties of basalt, some abounding with large crystals of augite and tarnished olivine, others compact and earthy, – some slightly vesicular, and others occasionally amygdaloidal. These rocks are generally much decomposed, and to my surprise, I found in several sections that it was impossible to distinguish, even approximately, the line of separation between the decayed lava and the alternating beds of tuff. Since the specimens have become dry, it is rather more easy to distinguish the decomposed igneous rocks from the sedimentary tuffs. This gradation in character between rocks having such widely different origins, may I think be explained by the yielding under pressure of the softened sides of the vesicular cavities, which in many volcanic rocks occupy a large proportion of their bulk. As the vesicles generally increase in size and number in the upper parts of a stream of lava, so would the effects of their compression increase; the yielding, moreover, of each lower vesicle must tend to disturb all the softened matter above it. Hence we might expect to trace a perfect gradation from an unaltered СКАЧАТЬ