The Variation of Animals and Plants under Domestication — Volume 2. Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу The Variation of Animals and Plants under Domestication — Volume 2 - Darwin Charles страница 14

СКАЧАТЬ the two sexes do not often differ much; and the males and females of the parent-form, the C. livia, are undistinguishable: yet we have seen that with pouters the male has the characteristic quality of pouting more strongly developed than the female; and in certain sub-varieties the males alone are spotted or striated with black, or otherwise differ in colour. When male and female English carrier-pigeons are exhibited in separate pens, the difference in the development of the wattle over the beak and round the eyes is conspicuous. So that here we have instances of the appearance of secondary sexual characters in the domesticated races of a species in which such differences are naturally quite absent.]

      On the other hand, secondary sexual characters which belong to the species in a state of nature are sometimes quite lost, or greatly diminished, under domestication. We see this in the small size of the tusks in our improved breeds of the pig, in comparison with those of the wild boar. There are sub- breeds of fowls, in which the males have lost the fine-flowing tail-feathers and hackles; and others in which there is no difference in colour between the two sexes. In some cases the barred plumage, which in gallinaceous birds is commonly the attribute of the hen, has been transferred to the cock, as in the cuckoo sub-breeds. In other cases masculine characters have been partly transferred to the female, as with the splendid plumage of the golden-spangled Hamburgh hen, the enlarged comb of the Spanish hen, the pugnacious disposition of the Game hen, and as in the well-developed spurs which occasionally appear in the hens of various breeds. In Polish fowls both sexes are ornamented with a topknot, that of the male being formed of hackle-like feathers, and this is a new male character in the genus Gallus. On the whole, as far as I can judge, new characters are more apt to appear in the males of our domesticated animals than in the females (14/29. I have given in my 'Descent of Man' 2nd edition page 223 sufficient evidence that male animals are usually more variable than the females.), and afterwards to be inherited exclusively or more strongly by the males. Finally, in accordance with the principle of inheritance as limited by sex, the preservation and augmentation of secondary sexual characters in natural species offers no especial difficulty, as this would follow through that form of selection which I have called sexual selection.

       INHERITANCE AT CORRESPONDING PERIODS OF LIFE.

      This is an important subject. Since the publication of my 'Origin of Species' I have seen no reason to doubt the truth of the explanation there given of one of the most remarkable facts in biology, namely, the difference between the embryo and the adult animal. The explanation is, that variations do not necessarily or generally occur at a very early period of embryonic growth, and that such variations are inherited at a corresponding age. As a consequence of this the embryo, even after the parent-form has undergone great modification, is left only slightly modified; and the embryos of widely-different animals which are descended from a common progenitor remain in many important respects like one another and probably like their common progenitor. We can thus understand why embryology throws a flood of light on the natural system of classification, as this ought to be as far as possible genealogical. When the embryo leads an independent life, that is, becomes a larva, it has to be adapted to the surrounding conditions in its structure and instincts, independently of those of its parents; and the principle of inheritance at corresponding periods of life renders this possible.

      This principle is, indeed, in one way so obvious that it escapes attention. We possess a number of races of animals and plants, which, when compared with one another and with their parent-forms, present conspicuous differences, both in their immature and mature states. Look at the seeds of the several kinds of peas, beans, maize, which can be propagated truly, and see how they differ in size, colour, and shape, whilst the full-grown plants differ but little. Cabbages, on the other hand, differ greatly in foliage and manner of growth, but hardly at all in their seeds; and generally it will be found that the differences between cultivated plants at different periods of growth are not necessarily closely connected together, for plants may differ much in their seeds and little when full-grown, and conversely may yield seeds hardly distinguishable, yet differ much when full-grown. In the several breeds of poultry, descended from a single species, differences in the eggs and chickens whilst covered with down, in the plumage at the first and subsequent moults, as well as in the comb and wattles, are all inherited. With man peculiarities in the milk and second teeth (of which I have received the details) are inheritable, and longevity is often transmitted. So again with our improved breeds of cattle and sheep, early maturity, including the early development of the teeth, and with certain breeds of fowl the early appearance of secondary sexual characters, all come under the same head of inheritance at corresponding periods.

      Numerous analogous facts could be given. The silk-moth, perhaps, offers the best instance; for in the breeds which transmit their characters truly, the eggs differ in size, colour, and shape: the caterpillars differ, in moulting three or four times, in colour, even in having a dark-coloured mark like an eyebrow, and in the loss of certain instincts; — the cocoons differ in size, shape, and in the colour and quality of the silk; these several differences being followed by slight or barely distinguishable differences in the mature moth.

      But it may be said that, if in the above cases a new peculiarity is inherited, it must be at the corresponding stage of development; for an egg or seed can resemble only an egg or seed, and the horn in a full-grown ox can resemble only a horn. The following cases show inheritance at corresponding periods more plainly, because they refer to peculiarities which might have supervened, as far as we can see, earlier or later in life, yet are inherited at the same period at which they first appeared.

      [In the Lambert family the porcupine-like excrescences appeared in the father and sons at the same age, namely, about nine weeks after birth. (14/30. Prichard 'Phys. Hist. of Mankind' 1851 volume 1 page 349.) In the extraordinary hairy family described by Mr. Crawfurd (14/31. 'Embassy to the Court of Ava' volume 1 page 320. The third generation is described by Capt. Yule in his 'Narrative of the Mission to the Court of Ava' 1855 page 94.), children were produced during three generations with hairy ears; in the father the hair began to grow over his body at six years old; in his daughter somewhat earlier, namely, at one year; and in both generations the milk teeth appeared late in life, the permanent teeth being afterwards singularly deficient. Greyness of hair at an unusually early age has been transmitted in some families. These cases border on diseases inherited at corresponding periods of life, to which I shall immediately refer.

      It is a well-known peculiarity with almond-tumbler pigeons, that the full beauty and peculiar character of the plumage does not appear until the bird has moulted two or three times. Neumeister describes and figures a brace of pigeons in which the whole body is white except the breast, neck, and head; but in their first plumage all the white feathers have coloured edges. Another breed is more remarkable: its first plumage is black, with rusty-red wing-bars and a crescent-shaped mark on the breast; these marks then become white, and remain so during three or four moults; but after this period the white spreads over the body, and the bird loses its beauty. (14/32. 'Das Ganze der Taubenzucht' 1837 s. 24 tab. 4 figure 2 s. 21 tab. 1 figure 4.) Prize canary- birds have their wings and tail black: "this colour, however, is only retained until the first moult, so that they must be exhibited ere the change takes place. Once moulted, the peculiarity has ceased. Of course all the birds emanating from this stock have black wings and tails the first year." (14/33. Kidd 'Treatise on the Canary' page 18.) A curious and somewhat analogous account has been given (14/34. Charlesworth 'Mag. of Nat. Hist.' volume 1 1837 page 167.) of a family of wild pied rooks which were first observed in 1798, near Chalfont, and which every year from that date up to the period of the published notice, viz., 1837 "have several of their brood particoloured, black and white. This variegation of the plumage, however, disappears with the first moult; but among the next young families there are always a few pied ones." These changes of plumage, which are inherited at various corresponding periods of life in the pigeon, canary-bird, and rook, are remarkable, because the parent-species passes through no such change.

      Inherited diseases afford evidence in some respects of less value than the foregoing cases, because diseases are not necessarily connected with any change in structure; but in other respects of more value, because the periods have been more carefully observed. СКАЧАТЬ