Geological Observations on South America. Darwin Charles
Чтение книги онлайн.

Читать онлайн книгу Geological Observations on South America - Darwin Charles страница 10

Название: Geological Observations on South America

Автор: Darwin Charles

Издательство: Public Domain

Жанр: Зарубежная классика

Серия:

isbn:

isbn:

СКАЧАТЬ Here, as in other parts of Patagonia, the gravel, or its sandy covering, was, as we have seen, often strewed with recent marine shells. The sandy covering sometimes fills up furrows in the gravel, as does the gravel in the underlying tertiary formations. The pebbles are frequently whitewashed and even cemented together by a peculiar, white, friable, aluminous, fusible substance, which I believe is decomposed feldspar. At Port Desire, the gravel rested sometimes on the basal formation of porphyry, and sometimes on the upper or the lower denuded tertiary strata. It is remarkable that most of the porphyritic pebbles differ from those varieties of porphyry which occur here abundantly in situ. The peculiar gallstone-yellow variety was common, but less numerous than at Port S. Julian, where it formed nearly one-third of the mass of the gravel; the remaining part there consisting of pale grey and greenish porphyries with many crystals of feldspar. At Port S. Julian, I ascended one of the flat- topped hills, the denuded remnant of the highest plain, and found it, at the height of 950 feet, capped with the usual bed of gravel.

      Near the mouth of the Santa Cruz, the bed of gravel on the 355 feet plain is from twenty to about thirty-five feet in thickness. The pebbles vary from minute ones to the size of a hen's egg, and even to that of half a man's head; they consist of paler varieties of porphyry than those found further northward, and there are fewer of the gallstone-yellow kind; pebbles of compact black clay-slate were here first observed. The gravel, as we have seen, covers the step-formed plains at the mouth, head, and on the sides of the great valley of the Santa Cruz. At a distance of 110 miles from the coast, the plain has risen to the height of 1,416 feet above the sea; and the gravel, with the associated great boulder formation, has attained a thickness of 212 feet. The plain, apparently with its usual gravel covering, slopes up to the foot of the Cordillera to the height of between 3,200 and 3,300 feet. In ascending the valley, the gravel gradually becomes entirely altered in character: high up, we have pebbles of crystalline feldspathic rocks, compact clay-slate, quartzose schists, and pale-coloured porphyries; these rocks, judging both from the gigantic boulders in the surface and from some small pebbles embedded beneath 700 feet in thickness of the old tertiary strata, are the prevailing kinds in this part of the Cordillera; pebbles of basalt from the neighbouring streams of basaltic lava are also numerous; there are few or none of the reddish or of the gallstone-yellow porphyries so common near the coast. Hence the pebbles on the 350 feet plain at the mouth of the Santa Cruz cannot have been derived (with the exception of those of compact clay- slate, which, however, may equally well have come from the south) from the Cordillera in this latitude; but probably, in chief part, from farther north.

      Southward of the Santa Cruz, the gravel may be seen continuously capping the great 840 feet plain: at the Rio Gallegos, where this plain is succeeded by a lower one, there is, as I am informed by Captain Sulivan, an irregular covering of gravel from ten to twelve feet in thickness over the whole country. The district on each side of the Strait of Magellan is covered up either with gravel or the boulder formation: it was interesting to observe the marked difference between the perfectly rounded state of the pebbles in the great shingle formation of Patagonia, and the more or less angular fragments in the boulder formation. The pebbles and fragments near the Strait of Magellan nearly all belong to rocks known to occur in Fuegia. I was therefore much surprised in dredging south of the Strait to find, in latitude 54 degrees 10' south, many pebbles of the gallstone-yellow siliceous porphyry; I procured others from a great depth off Staten Island, and others were brought me from the western extremity of the Falkland Islands. (At my request, Mr. Kent collected for me a bag of pebbles from the beach of White Rock harbour, in the northern part of the sound, between the two Falkland Islands. Out of these well-rounded pebbles, varying in size from a walnut to a hen's egg, with some larger, thirty-eight evidently belonged to the rocks of these islands; twenty-six were similar to the pebbles of porphyry found on the Patagonian plains, which rocks do not exist in situ in the Falklands; one pebble belonged to the peculiar yellow siliceous porphyry; thirty were of doubtful origin.) The distribution of the pebbles of this peculiar porphyry, which I venture to affirm is not found in situ either in Fuegia, the Falkland Islands, or on the coast of Patagonia, is very remarkable, for they are found over a space of 840 miles in a north and south line, and at the Falklands, 300 miles eastward of the coast of Patagonia. Their occurrence in Fuegia and the Falklands may, however, perhaps be due to the same ice-agency by which the boulders have been there transported.

      We have seen that porphyritic pebbles of a small size are first met with on the northern side of the Rio Colorado, the bed becoming well developed near the Rio Negro: from this latter point I have every reason to believe that the gravel extends uninterruptedly over the plains and valleys of Patagonia for at least 630 nautical miles southward to the Rio Gallegos. From the slope of the plains, from the nature of the pebbles, from their extension at the Rio Negro far into the interior, and at the Santa Cruz close up to the Cordillera, I think it highly probable that the whole breadth of Patagonia is thus covered. If so, the average width of the bed must be about two hundred miles. Near the coast the gravel is generally from ten to thirty feet in thickness; and as in the valley of Santa Cruz it attains, at some distance from the Cordillera, a thickness of 214 feet, we may, I think, safely assume its average thickness over the whole area of 630 by 200 miles, at fifty feet!

      The transportal and origin of this vast bed of pebbles is an interesting problem. From the manner in which they cap the step-formed plains, worn by the sea within the period of existing shells, their deposition, at least on the plains up to a height of 400 feet, must have been a recent geological event. From the form of the continent, we may feel sure that they have come from the westward, probably, in chief part from the Cordillera, but, perhaps, partly from unknown rocky ridges in the central districts of Patagonia. That the pebbles have not been transported by rivers, from the interior towards the coast, we may conclude from the fewness and smallness of the streams of Patagonia: moreover, in the case of the one great and rapid river of Santa Cruz, we have good evidence that its transporting power is very trifling. This river is from two to three hundred yards in width, about seventeen feet deep in its middle, and runs with a singular degree of uniformity five knots an hour, with no lakes and scarcely any still reaches: nevertheless, to give one instance of its small transporting power, upon careful examination, pebbles of compact basalt could not be found in the bed of the river at a greater distance than ten miles below the point where the stream rushes over the debris of the great basaltic cliffs forming its shore: fragments of the CELLULAR varieties have been washed down twice or thrice as far. That the pebbles in Central and Northern Patagonia have not been transported by ice-agency, as seems to have been the case to a considerable extent farther south, and likewise in the northern hemisphere, we may conclude, from the absence of all angular fragments in the gravel, and from the complete contrast in many other respects between the shingle and neighbouring boulder formation.

      Looking to the gravel on any one of the step-formed plains, I cannot doubt, from the several reasons assigned in this chapter, that it has been spread out and leveled by the long-continued action of the sea, probably during the slow rise of the land. The smooth and perfectly rounded condition of the innumerable pebbles alone would prove long-continued action. But how the whole mass of shingle on the coast-plains has been transported from the mountains of the interior, is another and more difficult question. The following considerations, however, show that the sea by its ordinary action has considerable power in distributing pebbles. Table 3 above shows how very uniformly and gradually the pebbles decrease in size with the gradually seaward increasing depth and distance. (I may mention, that at the distance of 150 miles from the Patagonian shore I carefully examined the minute rounded particles in the sand, and found them to be fusible like the porphyries of the great shingle bed. I could even distinguish particles of the gallstone-yellow porphyry. It was interesting to notice how gradually the particles of white quartz increased, as we approached the Falkland Islands, which are thus constituted. In the whole line of soundings between these islands and the coast of Patagonia dead or living organic remains were most rare. On the relations between the depth of water and the nature of the bottom, see Martin White on "Soundings in the Channel" pages 4, 6, 175; also Captain Beechey's "Voyage to the Pacific" chapter 18.) A series of this kind irresistibly leads to the conclusion, that the sea has the power of sifting and distributing the loose matter on its bottom. According to Martin White, the bed of the British Channel is disturbed during gales at depths of sixty-three and sixty-seven fathoms, and at thirty fathoms, СКАЧАТЬ