Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I. Фёдор Шкруднев
Чтение книги онлайн.

Читать онлайн книгу Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I - Фёдор Шкруднев страница 8

СКАЧАТЬ соотношение проявляется во всех пальцах рук и ног. Эта связь как-то необычна, потому что один палец длиннее другого без всякой видимой закономерности, но это все не случайно, как не случайно все в теле человека. Расстояния на пальцах, отмеченные от А до В до С до D до Е, все соотносятся друг с другом по пропорции Ф, равно как и фаланги пальцев от F до G до H.

      Рис. 15. Леонардо Пизанский (Фибоначчи), итальянский математик

      Рис. 16. Пропорция Ф в частях тела человека

      Взгляните на этот скелет лягушки (рис. 17) и посмотрите, как каждая косточка соответствует модели пропорции Ф точно так, как и в теле человека.

      Рис. 17. Пропорция Ф в скелете лягушки

      Обобщенное золотое сечение

      Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи – ассоциация, которая с 1963 года выпускает специальный журнал.

      Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

      Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8 на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой: 2 = 1 + 1; 4 = 2 + 2… во втором – это сумма двух предыдущих чисел: 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2…

      Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

      Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5. Рассмотрим числовой ряд, S + 1, первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через?S(n), то получим общую формулу?S(n) =?S(n – 1) +?S(n – S – 1).

      Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4 новые ряды чисел, которые получили название S-чисел Фибоначчи.

      В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 – xS – 1 = 0.

      Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 – знакомое классическое золотое сечение.

      Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

      Факты, подтверждающие существование золотых S-сечений СКАЧАТЬ