Характер физических законов. Ричард Филлипс Фейнман
Чтение книги онлайн.

Читать онлайн книгу Характер физических законов - Ричард Филлипс Фейнман страница 15

Название: Характер физических законов

Автор: Ричард Филлипс Фейнман

Издательство: ФТМ

Жанр: Физика

Серия:

isbn: 978-5-17-087507-8

isbn:

СКАЧАТЬ записывать законы, пользуясь принципом минимума. Если бы сила, например, была пропорциональна самой скорости перемещения, а не ускорению, то это было бы невозможно. Стоит сильно изменить законы, и вы обнаружите, что число возможных формулировок сократилось. Мне это всегда представлялось загадкой. Я не понимаю, почему правильные законы физики допускают такое огромное количество разных формулировок. Они похожи на крокетный шар, который проходит сразу через несколько ворот.

      Наконец, я хотел бы сделать несколько более общих замечаний о связи математики с физикой. Математики имеют дело только со структурой рассуждений, и им, в сущности, безразлично, о чем они говорят. Им даже не нужно знать, о чем они говорят, или, как они сами выражаются, истинны ли их утверждения. Объясню почему. Вы формулируете аксиомы: «То-то и то-то обстоит так, а то-то и то-то обстоит так». Что дальше? Дальше можно заниматься логикой, не зная, что означают слова «то-то и то-то». Если аксиомы полны и сформулированы точно, то человеку, строящему доказательство, необязательно понимать значение слов, для того чтобы получить новый вывод на языке, которым он пользуется. Если в одной из аксиом стоит слово «треугольник», то в выводах математика будут какие-то утверждения относительно треугольников, однако при получении этих выводов он не обязан знать, что за вещь – треугольник. Я же могу вернуться к началу его рассуждений и сказать: «Треугольник – это фигура с тремя сторонами, которая представляет собой то-то и то-то». И тогда я пойму его новые выводы. Другими словами, математик готовит абстрактные доказательства, которыми вы можете воспользоваться, приписав реальному миру некоторый набор аксиом. Физик же не должен забывать о значении своих фраз. Это очень важная обязанность, которой склонны пренебрегать люди, пришедшие в физику из математики. Физика – не математика, а математика – не физика. Одна помогает другой. Но в физике вы должны понимать связь слов с реальным миром. Получив какие-то выводы, вы должны их перевести на родной язык и на язык природы – в медные кубики и стеклянные шарики, с которыми вы будете экспериментировать. Только так вы сможете проверить истинность своих выводов. В математике этой проблемы не существует вовсе.

      Вполне понятно, что доказательства и способы мышления, найденные математиками, становятся для физиков могучими и полезными орудиями. Но и рассуждения физиков часто приносят пользу математикам.

      Математики любят придавать своим рассуждениям возможно более общую форму. Если я скажу им: «Я хочу поговорить об обычном трехмерном пространстве», – они ответят: «Вот вам все теоремы о пространстве п измерений». – «Но у меня только три измерения». – «Хорошо, подставьте n = 3!» Оказывается, что многие сложные теоремы выглядят гораздо проще, если их применить к частному случаю. А физика интересуют только частные случаи; он никогда не интересуется общим случаем. Он говорит о чем-то конкретном; ему не безразлично, о чем говорить. СКАЧАТЬ