Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию. А. Лиакумович
Чтение книги онлайн.

Читать онлайн книгу Научно-практические основы процесса дегидрирования этилбензола в присутствии водяного пара, полученного из воды, подвергнутой физическому воздействию - А. Лиакумович страница 2

СКАЧАТЬ промежуточными нагревателями. Перегретый пар подается вместе с ЭБ. На современных адиабатических установках дегидрирования, работающих при давлении 41 кПа, на выходе со второго реактора селективность достигает 97 % при конверсии ЭБ 60-70 % [23].

      В России из всех возможных схем применяется реактор с коаксиальным слоем катализатора и промежуточным подогревом. Достоинством такой конструкции является возможность создания агрегата практически любой производительности, определяемой высотой слоя катализатора [24, 25].

      В тоже время учеными был предложен ряд технологий, позволяющих интенсифицировать процесс дегидрирования ЭБ:

      – дегидрирование в мембранных реакторах [26]. На реакторах, оснащённых Pd мембранами, конверсия ЭБ выше на 10-15 % по сравнению с реакторами со стационарным слоем катализатора [27]. Это достигается за счёт мгновенного отвода водорода через стенки Pd-мембраны. Однако из-за чрезмерно высокой цены Pd мембраны не могут быть использованы в промышленных масштабах;

      – окисление образующегося водорода [28]. Технология разработана Universal Oil Products, осуществлена в демонстративном масштабе в подразделении Mitsubishi Chemical в Японии. Особенностью технологии является наличие между реакторами дополнительного малого реактора с палладиевым цеолитным катализатором гидрирования кислорода, специально подаваемого в реактор. Взаимодействие кислорода с водородом, образовавшимся в процессе дегидрирования, является экзотермической реакцией и сопровождается выделением тепла. Таким образом, во-первых, вводится дополнительное тепло, необходимое для проведения реакции, путем промежуточного подогрева контактного газа, во-вторых, выводится водород из зоны реакции, сдвигая ее равновесие вправо. Однако сведений о промышленной реализации этого процесса в литературе нет. Очевидно, возникли сложности, связанные с созданием катализатора сгорания водорода.

      Следующим этапом развития процессов дегидрирования можно считать успешный пуск в октябре 2003 г. на ОАО «Салаватнефтеоргсинтез» производства СТ мощностью 200 тыс. т/г вакуумным дегидрированием [29]. Технология была разработана российскими учеными под руководством Г.Р. Котельникова. Низкое соотношение [водяной пар]: [ЭБ] (менее 2,0:1 по массе) и высокий уровень конверсии ЭБ (до 70 %) обеспечивают низкие эксплуатационные затраты энергосредств, а высокие показатели селективности по СТ (до 95 % в промышленных условиях), обеспечивают низкий расход исходного сырья на производимый СТ.

      Однако расчет равновесных выходов СТ при дегидрировании ЭБ при разных температурах и степенях разбавления водяным паром показывает, что теоретически возможно достижение 80-90 % выхода СТ [30]. Во всех вышеизложенных методах не был достигнут термодинамический максимум. Резерв составляет около 10 %.

      Успешное внедрение вакуумного дегидрирования в промышленности означает начало перехода процессов нефтехимии на новый уровень, т.к. основные процессы, такие, как пиролиз, каталитический крекинг, дегидрирование парафиновых углеводородов (УВ), протекают с увеличением СКАЧАТЬ