Напомним читателю, что время проведения измерения вектора скорости складывается из времени преодоления фотоном расстояния L (смотри рис. 8.1.), а, это 3335 наносекунд при L=1000 метров; времени считывания показаний часов – микросекунды; времени обработки (расчетов) информации в автоматическом режиме, на современных компьютерах – микросекунды.
В целом, процедура измерения вектора скорости V не превысит долей миллисекунды. Так что, процесс измерения – почти мгновенен. Если измерения приводить каждый час, то в течение суток получим 24 точки замеров, в течение года получим – 8760 точек замеров. Такие замеры можно использовать для построения графика изменения суммарного вектора скорости в течение определенного календарного срока времени, например, в течение года. Возможный вид такого графика может быть представлен на рис. 9.1. Если бы мы знали все о взаимном расположении в пространстве составных частей суммарного вектора скорости движения галактики, Солнца и Земли, то мы бы представили читателю более точную картину изображения такого вектора скорости. Поэтому приходится говорить о возможном виде такого графика. На рис. 9.1. по оси ординат отображена величина суммарного вектора скорости движения галактики, Солнца и Земли. Ось абсцисс – временная шкала.
Рис. 9.1
где:
Vгс – суммарный вектор скорости, который образован путем векторного сложения скорости галактики и вектора линейной скорости перемещения Солнца, при его вращении вокруг центра галактики (постоянная, в течение 10 лет, составляющая вектора V);
1 – проекция траектории годового движения Земли вокруг Солнца на линию в пространстве – на вектор Vгс;
2 – проекция траектории суточного движения Земли вокруг земной оси вращения, на траекторию годового движения Земли. Такая проекция отображена не в масштабе, поскольку количество циклов суточных колебаний на годовой синусоиде должно быть 365. Такое количество суточных циклов не уместить на представленном рисунке;
3 – траектория суммарного перемещения в пространстве галактики и Солнца вокруг центра галактики. В течение 10 лет наблюдений за такой траекторией, ее имеет смысл рассматривать в качестве прямой линии. После 10 лет таких наблюдений, необходимо учитывать вращательное движение Солнца вокруг центра галактики.
Зададим вопрос: что будет, если мы станем испускать фотон в сторону, строго противоположную вектору скорости движения нашего объекта? В этом случае, до встречи с часами, фотон пролетит меньшее расстояние: L-m. Время, за которое фотон преодолевает такое расстояние, будет меньше, в сравнении с расстоянием: L+m.
Если, с помощью зеркала, заставить фотон перемещаться из точки испускания в точку приема и обратно – в точку испускания, то, в этом случае, фотон преодолеет расстояние: (L-m)+(L+m)=2L. Время преодоления такого двойного расстояния – соответствующее. При этом, мы видим, что реализация схемы измерения по принципу: СКАЧАТЬ