Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса. Дэйв Голдберг
Чтение книги онлайн.

Читать онлайн книгу Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - Дэйв Голдберг страница 10

СКАЧАТЬ то есть во всех субатомных реакциях, которые мы так или иначе наблюдали, – невозможно создавать частицы, не создавая одновременно соответствующего числа античастиц. Неуловимые частицы вроде бозона Хиггса мы регистрируем, наблюдая не саму частицу, а ее распад на частицу и античастицу.

      А обратная сторона медали такова, что если положить электрон и позитрон в кастрюлю и хорошенько размешать, то оба они будут уничтожены, и высвободится вся энергия, которую пообещал вам Эйнштейн. Именно это постоянно происходит в космическом вакууме. Частицы и античастицы создаются и уничтожаются, и это идеально согласованные процессы.

      По крайней мере, сейчас именно это и происходит. Когда-то, в далеком прошлом, обычное вещество одерживало верх. Так было не только в нашем захолустном уголке вселенной – похоже, так было везде. Важная, но еще не вполне осознанная задача современной космологии – разобраться, почему тогда была нарушена нынешняя С-симметрия вселенной, а для этого нам придется заглянуть в прошлое.

      В 2001 году НАСА запустило космический аппарат WMAP – Зонд микроволновой анизотропии имени Уилкинсона. Как явствует из сокращенного названия, где ясно видно слово «map» – «карта», задачей аппарата было создать подробную карту реликтового микроволнового излучения, пережитка первых эпох существования вселенной.

      Я уже говорил, что свет состоит из частиц под названием фотоны, однако уклонился от ответа на вопрос, чем фотоны отличаются друг от друга. Различия сводятся к энергии. Например, у синего света энергии в пересчете на отдельный фотон больше, чем у красного. При еще более низкой энергии, чем у красного света, за пределами чувствительности глаз, мы обнаруживаем инфракрасное, а если энергия еще ниже – микроволновое излучение. На другом конце спектра, при энергиях, которые высоковаты для наших глаз, находятся ультрафиолетовые фотоны. При энергиях еще выше получается рентгеновское излучение, а при самых высоких – гамма-излучение.

      Если вам случалось надевать инфракрасные очки, вы, наверное, заметили, что живые теплокровные существа светятся чуть-чуть ярче, чем их более прохладное окружение. Именно поэтому Хищник так здорово охотится. Все теплые тела испускают излучение, некоторые – особенно сильно, если вы меня понимаете… Раскаленные уголья светятся красным, однако вселенная гораздо холоднее угля, ее температура составляет около 2,7 К, и она светится в микроволновом диапазоне. В глубоком космосе холодно, очень холодно.

      Однако стужа царила здесь не всегда. Вселенная расширяется, а это значит, что энергия все сильнее и сильнее рассеивается. На ранних этапах истории вселенной все было упаковано гораздо плотнее, и температуры стояли куда как выше. Например, спустя 14 миллионов лет с момента возникновения вселенной, в ней стояла приятная, комнатная температура в 310 К, и вселенная светилась в инфракрасном диапазоне. Если заглянуть еще дальше, то окажется, что через 1 секунду после Большого взрыва СКАЧАТЬ