Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет. Нейт Сильвер
Чтение книги онлайн.

Читать онлайн книгу Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер страница 54

СКАЧАТЬ в том, что метод Ричардсона требовал выполнения огромного объема работы. Для решения поставленных им задач были нужны компьютеры. Как вы увидите в главе 9, компьютеры не каждую из поставленных им задач могут выполнить и далеко не всегда служат панацеей в процессе предсказания. Однако компьютеры идеальны с точки зрения вычислений – то есть быстрого и точного многократного повторения одних и тех же арифметических задач. Они отлично подходят для решения шахматных задач, подчиняющихся довольно простым правилам, но сложных с точки зрения вычислений. Сходные задачи имеются и в области метеорологии.

      Первый компьютерный прогноз погоды создал в 1950 г. математик Джон фон Нейман, который использовал для этого машину, способную осуществлять порядка 5000 вычислений в секунду{253}. Расчет происходил намного быстрее, чем мог сделать Ричардсон с карандашом и листом бумаги на французском деревенском поле. Тем не менее прогноз оказался неудачным, и его результаты оказались не намного точнее обычной случайной догадки.

      Со временем, к середине 1960‑х гг., компьютеры начали демонстрировать определенные навыки в прогнозировании погоды. Так, Bluefire, выдающий результаты примерно в 15 миллиардов раз быстрее, чем первый компьютерный прогноз (и, возможно, в квадрильон раз быстрее, чем Ричардсон), дает нам куда более осмысленные результаты благодаря скорости вычислений.

      Прогнозы погоды в наши дни значительно чаще бывают верными, чем 15 или 20 лет назад. Однако, если скорость вычислений в последние десятилетия увеличивалась по экспоненте, прогресс в точности прогнозов погоды был хотя и стабильным, но медленным.

      Можно назвать две основные причины сложившейся ситуации. Первая связана с тем, что мир имеет не одно и не два измерения. Самый надежный способ повысить правильность прогноза погоды – то есть на один шаг приблизиться к пониманию поведения каждой молекулы – состоит в уменьшении размера сетки, используемой для отображения атмосферы. Сектора Ричардсона имели размер 340 на 340 км, обеспечивая в лучшем случае слишком масштабный взгляд на планету (в квадрат 340 на 340 км² можно почти полностью вместить Нью-Йорк и Бостон – города, в которых может быть совершенно разная погода). Предположим, вы хотите в два раза уменьшить площадь секторов, до 170 на 170 км. Благодаря этому ваш прогноз станет более точным, но при этом увеличится количество уравнений, которые вам надо решить. В реальности количество уравнений вырастет не в два, а в четыре раза, поскольку вы уменьшаете масштаб и по длине, и по ширине. Иными словами, для того чтобы решить такую задачу, вам нужно примерно в 4 раза увеличить вычислительную мощность.

      Однако вам нужно учитывать не только эти два измерения. В верхних слоях атмосферы могут проявляться одни закономерности, а в нижних слоях, над океанами и у поверхности Земли – совершенно иные. В трехмерной вселенной двукратное увеличение разрешения нашей СКАЧАТЬ



<p>253</p>

J. G. Charney, R. Fjörtoft, and J. von Neumann, «Numerical Integration of the Barotropic Vorticity Equation», Tellus 2 (1950): pp. 237–254. http://mathsci.ucd.ie/~plynch/eniac/CFvN-1950.pdf.