Рекомендации по проектированию безопасных установок для сушки угля. Оборудование. Примеры. Анализ ошибок. Dr.-Ing. W. Garber
Чтение книги онлайн.

Читать онлайн книгу Рекомендации по проектированию безопасных установок для сушки угля. Оборудование. Примеры. Анализ ошибок - Dr.-Ing. W. Garber страница 3

СКАЧАТЬ взрыво-пожароопасности при термической сушке углей

      Одной из наиболее опасных аварий на предприятиях по добыче, переработке и использованию угля являются взрывы угольной пыли. Поражающими факторами взрыва горючей пыли являются ударная волна, высокая температура, образующиеся токсичные газы. Ударная волна способна распространяться на большие расстояния, поэтому взрывы горючей пыли наносят огромный экономический ущерб предприятиям, приводят к групповому травматизму, в том числе с летальным исходом [1].

      «В трактах сушильных установок, особенно в периоды плановой и аварийной остановок, могут происходить оседание и тление угольной пыли. При повторном запуске сушильной установки может произойти взметание пыли и при определенных условиях (при высоком содержании кислорода в горячих газах) может произойти образование детонационной (взрывной) волны в тракте сушильной установки.» [5].

      Сушка углей или других горючих материалов принципиально отличается от сушки негорючих материалов, например концентратов руд, металлов, известняка, глин и тп. Суть различия не в характере процесса сушки, тут отличий нет, или они незначительны. Различия определяются поведением угля при нагреве.

      02.1. Уголь как горючее вещество. Структура. Выделение летучих

      Угольное вещество представляет собой высокомолекулярные соединения, в которых макромолекулы состоят из связанных между собой шестиугольных ароматических колец – стабильных ядер, окруженных химически связанными с ядрами молекулами боковых углеводородных цепочек.

      Гипотетическая структура молекулы угля и её термическое разрушение показаны на Рис.2. Разрушение структуры происходит по связям с наименьшими энергиями разрыва, например С – С (346 кДж/моль) или С – О (358 кДж/моль). В результате разрыва таких связей из угля выделяются летучие компоненты. Для сравнения тройная связь С=С в шестигранных ароматических структурах молекулы угля имеет энергию разрыва 836,3 кДж/моль. Это определяет высокую устойчивость ароматических шестигранных структур в молекуле угля.

      «По мере подвода тепла частица угля нагревается, подсушивается, затем начинается выделение летучих. Чем больше содержание летучих в угле, тем интенсивнее происходит их выход. Выход летучих начинается при температурах тем более высоких, чем старее топливо. Из бурых углей выход летучих начинается при температуре около 170°С, из газового угля – около 210°С, из ПЖ – около 260°С, из тощих углей – около 320°С, из антрацита – около 380°С» [23]. Так часто описывают процесс термического выхода летучих в учебниках, добавляя, что основу летучих составляет метан СН4.

      Реальность однако сложнее.

      Во-первых температура начала выделения летучих из углей разной марки не может быть определена так однозначно, как это записано выше (и в учебниках). Следует учитывать, что метан, как и другие углеводороды выделяется СКАЧАТЬ