Data Science For Dummies. Lillian Pierson
Чтение книги онлайн.

Читать онлайн книгу Data Science For Dummies - Lillian Pierson страница 13

Название: Data Science For Dummies

Автор: Lillian Pierson

Издательство: John Wiley & Sons Limited

Жанр: Базы данных

Серия:

isbn: 9781119811619

isbn:

СКАЧАТЬ in bulk directly from the pages on a website, in other words) for fresh data in order to discover and report the latest breaking-news stories. (I talk more about data storytelling in Chapter 8.)

       Directors of data science bolster their technical project management capabilities with an added expertise in data science. Their work includes leading data projects and working to protect the profitability of the data projects for which they’re responsible. They also act to ensure transparent communication between C-suite executives, business managers, and the data personnel on their team who actually do the implementation work. (I share more details in Part 4 about leading successful data projects; check out Chapter 18 for details about data science leaders.)

       Data product managers supercharge their product management capabilities with the power of data science. They use data science to generate predictive insights that better inform decision-making around product design, development, launch, and strategy. This is a classic type of data leadership role, the likes of which are covered in Chapter 18. For more on developing effective data strategy, take a gander at Chapters 15 through 17.

       Machine learning engineers combine software engineering superpowers with data science skills to build predictive applications. This is a classic data implementation role, more of which is discussed in Chapter 2.

      Communicating data insights

      Not to cause alarm, but it’s fully possible for you to develop deep and sophisticated data science skills and then come away with a gut feeling that you know you’re meant to do something more.

      Earlier in my data career, I was no stranger to this feeling. I’d just gone and pumped up my data science skills. It was the “sexiest” career path — according to Harvard Business Review in 2012 — and offered so many opportunities. The money was good and the demand was there. What’s not to love about opportunities with big tech giants, start-ups, and multiple six-figure salaries, right?

      But very quickly, I realized that, although I had the data skills and education I needed to land some sweet opportunities (including interview offers from Facebook!), I soon realized that coding away and working only on data implementation simply weren’t what I was meant to do for the rest of my life.

      Something about getting lost in the details felt disempowering to me. My personality craved more energy, more creativity — plus, I needed to see the big-picture impact that my data work was making.

      In short, I hadn’t yet discovered my inner data superhero. I coined this term to describe that juicy combination of a person’s data skills, coupled with their personality, passions, goals, and priorities. When all these aspects are in sync, you’ll find that you’re absolutely on fire in your data career. These days, I’m a data entrepreneur. I get to spend my days doing work that I absolutely adore and that’s truly aligned with my mission and vision for my data career and life-at-large. I want the same thing for you, dear reader.

      

Over on the companion site to this book (https://businessgrowth.ai/), you can find free access to a fun, 45-second quiz about data career paths. It helps you uncover your own inner data superhero type. Take the quiz to receive personalized data career recommendations that directly align with your unique combination of data skills, personality, and passions.

      The data implementer

      Some data science professionals were simply born to be implementers. If that’s you, then your secret superpower is building data and artificial intelligence (AI) solutions. You have a meticulous attention to detail that naturally helps you in coding up innovative solutions that deliver reliable and accurate results — almost every time. When you’re facing a technical challenge, you can be more than a little stubborn. You’re able to accomplish the task, no matter how complex.

      Without implementers, none of today’s groundbreaking technologies would even exist. Their unparalleled discipline and inquisitiveness keep them in the problem-solving game all the way until project completion. They usually start off a project with a simple request and some messy data, but through sheer perseverance and brainpower, they're able to turn them into clear and accurate predictive data insights — or a data system, if they prefer to implement data engineering rather than data science tasks. If you’re a data implementer, math and coding are your bread-and-butter, so to speak.

      Part 2 of this book are dedicated to showing you the basics of data science and the skills you need to take on to get started in a career in data science implementation. You may also be interested in how your work in this area is applied to improve a business’s profitability. You can read all about this topic in Part 3.

      The data leader

      Other data science professionals naturally gravitate more toward business, strategy, and product. They take their data science expertise and apply it to lead profit-forming data science projects and products. If you’re a natural data leader, then you’re gifted at leading teams and project stakeholders through the process of building successful data solutions. You’re a meticulous planner and organizer, which empowers you to show up at the right place and the right time, and hopefully keep your team members moving forward without delay.